Search results

1 – 10 of 24
Open Access
Article
Publication date: 16 February 2023

Danladi Chiroma Husaini, Kemberly Manzur and Jorge Medrano

This systematic review examined the emerging threat of indoor and outdoor pollutants to public health in Latin America and the Caribbean (LAC).

Abstract

Purpose

This systematic review examined the emerging threat of indoor and outdoor pollutants to public health in Latin America and the Caribbean (LAC).

Design/methodology/approach

Pollutants and pollution levels are becoming an increasing cause for concern within the LAC region, primarily because of the rapid increase in urbanization and the use of fossil fuels. The rise in indoor and outdoor air pollutants impacts public health, and there are limited regional studies on the impact of these pollutants and how they affect public health. A comprehensive literature search was conducted using Google Scholar, PubMed, Scopus, EBSCOhost, Web of Science and ScienceDirect databases. Significant search terms included “indoor air pollution,” “outdoor air pollution,” “pollution,” “Latin America,” “Central America,” “South America” and “Caribbean was used.” The systematic review utilized the Rayyan systematic software for uploading and sorting study references.

Findings

Database searches produced 1,674 results, of which, after using the inclusion–exclusion criteria and assessing for bias, 16 studies were included and used for the systematic review. These studies covered both indoor and outdoor pollution. Various indoor and outdoor air pollutants linked to low birth weight, asthma, cancer and DNA impairment were reported in this review. Even though only some intervention programs are available within the region to mitigate the harmful effects of pollution, these programs need to be robust and appropriately implemented, causing possible threats to public health. Significant gaps in the research were identified, especially in the Caribbean.

Research limitations/implications

Limitations of the study include limited available research done within LAC, with most of the research quantifying pollutants rather than addressing their impacts. Additionally, most studies focus on air pollution but neglect water and land pollution’s effects on public health. For this reason, the 16 studies included limited robustness of the review.

Originality/value

Although available studies quantifying pollution threats in LAC were identified in this review, research on the adverse impacts of pollution, especially concerning public health, is limited. LAC countries should explore making cities more energy-efficient, compact and green while improving the transportation sector by utilizing clean power generation. In order to properly lessen the effects of pollution on public health, more research needs to be done and implemented programs that are working need to be strengthened and expanded.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 15 December 2023

Francis Olawale Abulude, Domenico Suriano, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Ifeoluwa Ayodeji Abulude and Emmanuel Awogbindin

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as…

Abstract

Purpose

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as particulate matter (PM) (PM1, PM2.5 and PM10) in Akure, Nigeria, as well as the relationship between the parameters’ concentrations.

Design/methodology/approach

The evaluation, which lasted four months, used a low-cost air sensor that was positioned two meters above the ground. All sensor procedures were correctly carried out.

Findings

CO2 (430.34 ppm), NO2 (93.31 ppb), O3 (19.94 ppb), SO2 (40.87 ppb), PM1 (29.31 µg/m3), PM2.5 (43.56 µg/m3), PM10 (50.70 µg/m3), temperature (32.4°C) and relative humidity (50.53%) were the average values obtained. The Pearson correlation depicted the relationships between the pollutants and weather factors. With the exception of April, which had significant SO2 (18%) and low PM10 (49%) contributions, NO2 and PM10 were the most common pollutants in all of the months. The mean air quality index (AQI) for NO2 indicated that the AQI was “moderate” (51–100). In contrast to SO2, whose AQI ranged from “moderate” to “very unhealthy,” O3's AQI ranged from “good” (50) to “unhealthy” (151–200). Since PM1, PM2.5 and PM10 made up the majority of PC1’s contribution, both PM2.5 and PM10 were deemed “hazardous.”

Practical implications

The practical implication of indoor air pollution is long-term health effects, including heart disease, lung cancer and respiratory diseases such as emphysema. Indoor air pollution can also cause long-term damage to people’s nerves, brain, kidneys, liver and other organs.

Originality/value

Lack of literature in terms of indoor air quality (IAQ) in Akure, Ondo State. With this work, the information obtained will assist all stakeholders in policy formulation and implementation. Again, the low-cost sensor used is new to this part of the world.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 27 July 2023

Aicha Gasmi, Marc Heran, Noureddine Elboughdiri, Lioua Kolsi, Djamel Ghernaout, Ahmed Hannachi and Alain Grasmick

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Abstract

Purpose

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Design/methodology/approach

Modeling is the most relevant tool for understanding the functioning of some complex processes such as biological wastewater treatment. A steady state model equation of activated sludge model 1 (ASM1) was developed, especially for autotrophic biomass (XBA) and for oxygen uptake rate (OUR). Furthermore, a respirometric measurement, under steady state and endogenous conditions, was used as a new tool for quantifying the viable biomass concentration in the bioreactor.

Findings

The developed steady state equations simplified the sensitivity analysis and allowed the autotrophic biomass (XBA) quantification. Indeed, the XBA concentration was approximately 212 mg COD/L and 454 mgCOD/L for SRT, equal to 20 and 40 d, respectively. Under the steady state condition, monitoring of endogenous OUR permitted biomass quantification in the bioreactor. Comparing XBA obtained by the steady state equation and respirometric tool indicated a percentage deviation of about 3 to 13%. Modeling bioreactor using GPS-X showed an excellent agreement between simulation and experimental measurements concerning the XBA evolution.

Originality/value

These results confirmed the importance of respirometric measurements as a simple and available tool for quantifying biomass.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 19 April 2022

Niklas Rönnberg, Rasmus Ringdahl and Anna Fredriksson

The noise and dust particles caused by the construction transport are by most stakeholders experienced as disturbing. The purpose of this study is to explore how sonification can…

1167

Abstract

Purpose

The noise and dust particles caused by the construction transport are by most stakeholders experienced as disturbing. The purpose of this study is to explore how sonification can support visualization in construction planning to decrease construction transport disturbances.

Design/methodology/approach

This paper presents an interdisciplinary research project, combining research on construction logistics, internet of things and sonification. First, a data recording device, including sound, particle, temperature and humidity sensors, was implemented and deployed in a development project. Second, the collected data were used in a sonification design, which was, third, evaluated with potential users.

Findings

The results showed that the low-cost sensors used could capture “good enough” data, and that the use of sonification for representing these data is interesting and a possible useful tool in urban and construction transport planning.

Research limitations/implications

There is a need to further evolve the sonification design and better communicate the aim of the sounds used to potential users. Further testing is also needed.

Practical implications

This study introduces new ideas of how to support visualization with sonification planning the construction work and its impact on the vicinity of the site. Currently, urban planning and construction planning focus on visualizing the final result, with little focus on how to handle disturbances during the construction process.

Originality/value

Showing the potentials of using low-cost sensor data in sonification, and using sonification together with visualization, is the result of a novel interdisciplinary research area combination.

Details

Smart and Sustainable Built Environment, vol. 12 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Content available
Article
Publication date: 29 September 2023

Maneerat Kanrak, Yui-yip Lau, Xavier Ling and Saksuriya Traiyarach

The rapid growth in cruise shipping coupled with increasing public awareness of climate change has led to increasing concerns about the impact cruise shipping poses on the…

Abstract

Purpose

The rapid growth in cruise shipping coupled with increasing public awareness of climate change has led to increasing concerns about the impact cruise shipping poses on the environment, especially regarding air emissions. This study analyses the cruise shipping network of ports in and around the emission control areas (ECAs) to understand the structural properties of the network and ports.

Design/methodology/approach

A complex network approach was used to analyse the network data of 239 voyages serviced by 14 international cruise lines, visiting 127 ports across 44 countries in the Caribbean Sea.

Findings

It is found that the network has a small-world property with a short average path length and a high clustering coefficient. The regulations affect connections among ports, in which most ports in ECAs have lower connections than ports outside ECAs. A few ports in ECAs play important key roles, but many ports outside ECAs play a more important role in the network because the regulations are barriers for cruise ships entering the ports.

Originality/value

The findings of this study have drawn useful guidelines for cruise lines and port authorities to improve their operations. Constrictive recommendations are suggested to policymakers for designing reasonable regulations to attract more cruise shipping to travel in ECAs.

Details

Maritime Business Review, vol. 8 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Book part
Publication date: 28 September 2023

Abstract

Details

Digital Transformation, Strategic Resilience, Cyber Security and Risk Management
Type: Book
ISBN: 978-1-80455-262-9

Content available
Book part
Publication date: 8 April 2024

Abstract

Details

Modeling Economic Growth in Contemporary Czechia
Type: Book
ISBN: 978-1-83753-841-6

Open Access
Article
Publication date: 10 May 2024

Michelle Grace Tetteh-Caesar, Sumit Gupta, Konstantinos Salonitis and Sandeep Jagtap

The purpose of this systematic review is to critically analyze pharmaceutical industry case studies on the implementation of Lean 4.0 methodologies to synthesize key lessons…

Abstract

Purpose

The purpose of this systematic review is to critically analyze pharmaceutical industry case studies on the implementation of Lean 4.0 methodologies to synthesize key lessons, benefits and best practices. The goal is to inform decisions and guide investments in related technologies for enhancing quality, compliance, efficiency and responsiveness across production and supply chain processes.

Design/methodology/approach

The article utilized a systematic literature review (SLR) methodology following five phases: formulating research questions, locating relevant articles, selecting and evaluating articles, analyzing and synthesizing findings and reporting results. The SLR aimed to critically analyze pharmaceutical industry case studies on Lean 4.0 implementation to synthesize key lessons, benefits and best practices.

Findings

Key findings reveal recurrent efficiency gains, obstacles around legacy system integration and data governance as well as necessary operator training investments alongside technological upgrades. On average, quality assurance reliability improved by over 50%, while inventory waste declined by 57% based on quantified metrics across documented initiatives synthesizing robotics, sensors and analytics.

Research limitations/implications

As a comprehensive literature review, findings depend on available documented implementations within the search period rather than direct case evaluations. Reporting bias may also skew toward more successful accounts.

Practical implications

Synthesized implementation patterns, performance outcomes and concealed pitfalls provide pharmaceutical leaders with an evidence-based reference guide aiding adoption strategy development, resource planning and workforce transitioning crucial for Lean 4.0 assimilation.

Originality/value

This systematic assessment of pharmaceutical Lean 4.0 adoption offers an unprecedented perspective into the real-world issues, dependencies and modifications necessary for successful integration, absent from conceptual projections or isolated case studies alone until now.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Open Access
Article
Publication date: 6 March 2024

Chuloh Jung, Muhammad Azzam Ismail, Mohammad Arar and Nahla AlQassimi

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor…

Abstract

Purpose

This study aims to evaluate the efficiency of various techniques for enhancing indoor air quality (IAQ) in construction. It analyzed the alterations in the concentration of indoor air pollutants over time for each product employed in controlling pollution sources and removing it, which included eco-friendly substances and adsorbents. The study will provide more precise and dependable data on the effectiveness of these control methods, ultimately supporting the creation of more efficient and sustainable approaches for managing indoor air pollution in buildings.

Design/methodology/approach

The research investigates the impact of eco-friendly materials and adsorbents on improving indoor air quality (IAQ) in Dubai's tall apartment buildings. Field experiments were conducted in six units of The Gate Tower, comparing the IAQ of three units built with “excellent” grade eco-friendly materials with three built with “good” grade materials. Another experiment evaluated two adsorbent products (H and Z) in the Majestic Tower over six months. Results indicate that “excellent” grade materials significantly reduced toluene emissions. Adsorbent product Z showed promising results in pollutant reduction, but there is concern about the long-term behavior of adsorbed chemicals. The study emphasizes further research on household pollutant management.

Findings

The research studied the effects of eco-friendly materials and adsorbents on indoor air quality in Dubai's new apartments. It found that apartments using “excellent” eco-friendly materials had significantly better air quality, particularly reduced toluene concentrations, compared to those using “good” materials. However, high formaldehyde (HCHO) emissions were observed from wood products. While certain construction materials led to increased ethylbenzene and xylene levels, adsorbent product Z showed promise in reducing pollutants. Yet, there is a potential concern about the long-term rerelease of these trapped chemicals. The study emphasizes the need for ongoing research in indoor pollutant management.

Research limitations/implications

The research, while extensive, faced limitations in assessing the long-term behavior of adsorbed chemicals, particularly the potential for rereleasing trapped pollutants over time. Despite the study spanning a considerable period, indoor air pollutant concentrations in target households did not stabilize, making it challenging to determine definitive improvement effects and reduction rates among products. Comparisons were primarily relative between target units, and the rapid rise in pollutants during furniture introduction warrants further examination. Consequently, while the research provides essential insights, it underscores the need for more prolonged and comprehensive evaluations to fully understand the materials' and adsorbents' impacts on indoor air quality.

Practical implications

The research underscores the importance of choosing eco-friendly materials in new apartment constructions for better IAQ. Specifically, using “excellent” graded materials can significantly reduce harmful pollutants like toluene. However, the study also highlights that certain construction activities, such as introducing furniture, can rapidly elevate pollutant levels. Moreover, while adsorbents like product Z showed promise in reducing pollutants, there is potential for adsorbed chemicals to be rereleased over time. For practical implementation, prioritizing higher-grade eco-friendly materials and further investigation into furniture emissions and long-term behavior of adsorbents can lead to healthier indoor environments in newly built apartments.

Originality/value

The research offers a unique empirical assessment of eco-friendly materials' impact on indoor air quality within Dubai's rapidly constructed apartment buildings. Through field experiments, it directly compares different material grades, providing concrete data on pollutant levels in newly built environments. Additionally, it explores the efficacy of specific adsorbents, which is of high value to the construction and public health sectors. The findings shed light on how construction choices can influence indoor air pollution, offering valuable insights to builders, policymakers and residents aiming to promote public health and safety in urban living spaces.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Access

Only content I have access to

Year

Last 12 months (24)

Content type

1 – 10 of 24