Search results

1 – 10 of 118
Article
Publication date: 9 September 2024

Xi Jin, Hui Xu, Qifeng Zhao, Hao Zeng, Bing Lin, Ying Xiao, Junlei Tang, Zhen Nie, Yan Yan, Zhigang Di and Rudong Zhou

This study aims to report the development and experimental evaluation of two kinds of PANI@semiconductor based photocathodic anti-corrosion coating, for application on stainless…

Abstract

Purpose

This study aims to report the development and experimental evaluation of two kinds of PANI@semiconductor based photocathodic anti-corrosion coating, for application on stainless steel substrates.

Design/methodology/approach

PANI was in situ chemical polymerized on TiO2 and BiVO4 particles, and FT-IR and SEM/EDS were used to understand the characteristics and elemental distribution of the composite particles. Composite coatings, which consisted of epoxy, PANI@TiO2 or PANI@BiVO4 and graphene, were prepared on the 304L stainless steel. Photoelectrochemical response measurement, electrochemical tests and immersion tests were used to assess the anti-corrosion performance of the prepared coatings in 45°C 3.5 wt.% NaCl solution. And the corrosion protection mechanism was further explained by combining with surface observation.

Findings

The photoelectrochemical response tests revealed the good photocathodic effect of the coatings, and the reversible oxidation-reduction properties of PANI (pseudocapacitive effect) leading to the repeated usage of the coatings. Consequently, the anti-corrosion mechanism of the composite coating is attributed to the physical barrier effect of the coating, the anodic protection effect of PANI and the photocathodic and energy store effect.

Originality/value

These kind coatings could prevent corrosion from day to night for stainless steel, which has great engineering application prospects on stainless steel corrosion protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 September 2024

Nour Mani, Nhiem Tran, Alan Jones, Azadeh Mirabedini, Shadi Houshyar and Kate Fox

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that…

Abstract

Purpose

The purpose of this study is therefore to detail an additive manufacturing process for printing TiD parts for implant applications. Titanium–diamond (TiD) is a new composite that provides biocompatible three-dimensional multimaterial structures. Thus, the authors report a powder-deposition and print optimization strategy to overcome the dual-functionality gap by printing bulk TiD parts. However, despite favorable customization outcomes, relatively few additive manufacturing (AM) feedstock powders offer the biocompatibility required for medical implant and device technologies.

Design/methodology/approach

AM offers a platform to fabricate customized patient-specific parts. Developing feedstock that can be 3D printed into specific 3D structures while providing a favorable interface with the human tissue remains a challenge. Using laser metal deposition, feedstock powder comprising diamond and titanium was co-printed into TiD parts for mechanical testing to determine optimal manufacturing parameters.

Findings

TiD parts were fabricated comprising 30% and 50% diamond. The composite powder had a Hausner ratio of 1.13 and 1.21 for 30% and 50% TiD, respectively. The flow analysis (Carney flow) for TiD 30% and 50% was 7.53 and 5.15 g/s. The authors report that the printing-specific conditions significantly affect the integrity of the printed part and thus provide the optimal manufacturing parameters for structural integrity as determined by micro-computed tomography, nanoindentation and biocompatibility of TiD parts. The hardness, ultimate tensile strength and yield strength for TiD are 4–6 GPa (depending on build position), 426 MPa and 375 MPa, respectively. Furthermore, the authors show that increasing diamond composition to 30% results in higher osteoblast viability and lower bacteria count than titanium.

Originality/value

In this study, the authors provide a clear strategy to manufacture TiD parts with high integrity, performance and biocompatibility, expanding the material feedstock library and paving the way to customized diamond implants. Diamond is showing strong potential as a biomedical material; however, upscale is limited by conventional techniques. By optimizing AM as the avenue to make complex shapes, the authors open up the possibility of patient-specific diamond implant solutions.

Graphical abstarct

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 July 2024

Roza Rafiei, Leila Roozbeh Nasiraie, Zahra Emam Jumeh and Sara Jafarian

The use of polysaccharides increases solubility and consistency and causes functions such as viscosity? Moisture and food emulsifier stabilizer. This study aims to enrich the…

Abstract

Purpose

The use of polysaccharides increases solubility and consistency and causes functions such as viscosity? Moisture and food emulsifier stabilizer. This study aims to enrich the formulation of low-fat mozzarella cheese using microcoated vitamin D3 (VD3).

Design/methodology/approach

This study investigates the addition of hydrocolloids to low-fat mozzarella cheese to enhance its properties and nutritional value. Tests were conducted on cheese samples with 0.05% and 0.25% hydrocolloid concentrations at various stages: before production and at three and six months’ postproduction. The samples were evaluated for elasticity, pH and solubility to select the best one, which was then fortified with VD3. The vitamin was microencapsulated using alginate and whey protein to shield it from light and oxygen, optimizing the formula using the response surface method. The fortified cheese was tested for VD3 content over its shelf life.

Findings

Results indicated that all hydrocolloids tested improved moisture and meltability of the cheese while higher protein levels increased stretchability two to threefold. Rice starch hydrocolloid at 0.05% concentration was chosen due to superior sensory scores and minimal oil separation. This study concluded that VD3 levels remained stable during the cheese’s shelf life, suggesting that this approach could enhance the nutritional value of low-fat cheese without compromising its quality. Therefore, after examining the obtained results and comparing the regression models, the results indicated that the Quadratic model was chosen to investigate the effect of independent variables on the response rate, which had a statistically significant difference with other models (p = 0.0019). Also the results of the area under the curve and using the encapsulation efficiency equation, the percentage of microencapsulated vitamin was obtained, and according to the simulation results, the encapsulation efficiency was reported as 89.02%.

Originality/value

Developing innovative functional dairy products fortified with VD3 could improve the vitamin D status in deficient populations. Therefore, these designs can be applied at industrial scales for functional cheese production.

Details

Nutrition & Food Science , vol. 54 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Open Access
Article
Publication date: 16 July 2024

Mohammed Y. Fattah, Qutaiba G. Majeed and Hassan H. Joni

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and…

Abstract

Purpose

The experiments of this study investigated the effect of the subgrade degree of saturation on the value of the stresses generated on the surface and the middle (vertical and lateral stresses). The objectives of this study can be identified by studying the effect of subgrade layer degree of saturation variation, load amplitude and load frequency on the transmitted stresses through the ballast layer to the subgrade layer and the stress distribution inside it and investigating the excess pore water pressure development in the clay layer in the case of a fully saturated subgrade layer and the change in matric suction in the case of an unsaturated subgrade layer.

Design/methodology/approach

Thirty-six laboratory experiments were conducted using approximately half-scale replicas of real railways, with an iron box measuring 1.5 x 1.0 × 1.0 m. Inside the box, a 0.5 m thick layer of clay soil representing the base layer was built. Above it is a 0.2 m thick ballast layer made of crushed stone, and on top of that is a 0.8 m long rail line supported by three 0.9 m (0.1 × 0.1 m) slipper beams. The subgrade layer has been built at the following various saturation levels: 100, 80, 70 and 60%. Experiments were conducted with various frequencies of 1, 2 and 4 Hz with load amplitudes of 15, 25 and 35 kN.

Findings

The results of the study demonstrated that as the subgrade degree of saturation decreased from 100 to 60%, the ratio of stress in the lateral direction to stress in the vertical direction generated in the middle of the subgrade layer decreased as well. On average, this ratio changed from approximately 0.75 to approximately 0.65.

Originality/value

The study discovered that as the test proceeded and the number of cycles increased, the value of negative water pressure (matric suction) in the case of unsaturated subgrade soils declined. The frequency of loads had no bearing on the ratio of decline in matric suction values, which was greater under a larger load amplitude than a lower one. As the test progressed (as the number of cycles increased), the matric suction dropped. For larger load amplitudes, there is a greater shift in matric suction. The change in matric suction is greater at higher saturation levels than it is at lower saturation levels. Furthermore, it is seen that the load frequency value has no bearing on how the matric suction changes. For all load frequencies and subgrade layer saturation levels, the track panel settlement rises with the load amplitude. Higher load frequency and saturation levels have a greater impact.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 28 February 2023

Ripendeep Singh Sidhu, Gurmeet Singh and Harjot Singh Gill

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with…

Abstract

Purpose

This empirical study aims to investigate the erosion wear performance of two different 3D-printed materials (acrylonitrile butadiene styrene [ABS] and polylactic acid [PLA]) with various micro textures. The two different textures (prism and square) were created over the surfaces of both materials by using the 3D-printed technique.

Design/methodology/approach

The erosion experiments on both materials were performed by using Ducom Erosion Jet Tester. Erosion tests were performed at four different impacting velocities (15, 30, 45 and 60 m/s) with the four different particle sizes (17, 39, 63 97 µm) at the impact angles (30°–90°) for the time duration of 5, 10, 15 and 20 min. The two different textures prism and cone were used for performing the erosion experiments. Taguchi’s orthogonal L16 (mixed level) was used to reduce the number of experiments and to determine the impact of these parameters on erosion wear performance of both 3D-printed materials.

Findings

The PLA with cone texture was found to be best (against erosion) than the ABS cone and prism textures due to their high hardness (68 HV). Also, the average signal to noise (S/N) ratio for PLA and ABS was measured as 56.4 and 44.4 dB, respectively. As the value of the S/N ratio is inversely proportional to the erosion rate, the PLA has the least erosion rate as compared to the ABS. The sequence of erosion wear influencing parameters for both materials was in the following order: velocity > erodent size > texture > impact angle > time interval.

Originality/value

Both PLA and ABS with different micro textures for erosion testing were studied with Taguchi’s optimization method, and the erosion mechanisms are well analyzed by using scanning electron microscopy and Image J techniques.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2023

Mehmet Ozdemir, Serap Mert and Ayse Aytac

This study aims to perform the surface treatment of synthetic α-Fe2O3 red iron oxide pigment with hydrolysate 3-aminopropyl silane (A) and colloidal silica (CS) and investigate…

Abstract

Purpose

This study aims to perform the surface treatment of synthetic α-Fe2O3 red iron oxide pigment with hydrolysate 3-aminopropyl silane (A) and colloidal silica (CS) and investigate the effects of surface-treated pigment on the styrene acrylic (SA) emulsion and polyurethane (PU) dispersion.

Design/methodology/approach

For this purpose, firstly red iron oxide particles were modified with A and CS separately in an aqueous medium. After isolation of the modified iron oxide were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Moreover, the degree of the dispersion stability of the modified pigment in coatings with SA emulsion and PU dispersion was investigated by using an oscillation rheometer. Loss (G''), storage (G') modulus, loss factor [tan(δ)] and yield stress (τ0) values were determined by performing amplitude and frequency sweep tests.

Findings

The τ0 in SA coatings decreases with the amount of used A and increases with the amount of used CS. The τ0 decreases as the amount of used A and CS in PU coatings increases. The use of CS on red iron oxide pigments causes storage modulus to increase in SA coatings at low angular frequencies, while it causes a decrease in PU coatings.

Originality/value

To the best of the authors’ knowledge, for the first time, the suspended state of the iron oxide hybrid pigment formed with CS in the coating was investigated rheologically in this study.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 10 July 2024

Felix Endress, Julius Tiesler and Markus Zimmermann

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called…

237

Abstract

Purpose

Metal laser-powder-bed-fusion using laser-beam parts are particularly susceptible to contamination due to particles attached to the surface. This may compromise so-called technical cleanliness (e.g. in NASA RPTSTD-8070, ASTM G93, ISO 14952 or ISO 16232), which is important for many 3D-printed components, such as implants or liquid rocket engines. The purpose of the presented comparative study is to show how cleanliness is improved by design and different surface treatment methods.

Design/methodology/approach

Convex and concave test parts were designed, built and surface-treated by combinations of media blasting, electroless nickel plating and electrochemical polishing. After cleaning and analysing the technical cleanliness according to ASTM and ISO standards, effects on particle contamination, appearance, mass and dimensional accuracy are presented.

Findings

Contamination reduction factors are introduced for different particle sizes and surface treatment methods. Surface treatments were more effective for concave design features, however, the initial and resulting absolute particle contamination was higher. Results further indicate that there are trade-offs between cleanliness and other objectives in design. Design guidelines are introduced to solve conflicts in design when requirements for cleanliness exist.

Originality/value

This paper recommends designing parts and corresponding process chains for manufacturing simultaneously. Incorporating post-processing characteristics into the design phase is both feasible and essential. In the experimental study, electroless nickel plating in combination with prior glass bead blasting resulted in the lowest total remaining particle contamination. This process applied for cleanliness is a novelty, as well as a comparison between the different surface treatment methods.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 September 2024

Nandalal Acharjee, Subhas Ganguly, Prasenjit Biswas and Bidyapati Sarangi

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has…

Abstract

Purpose

The purpose of this study is to develop black pigmented ceramic stoneware bodies that integrate various aspects of material composition and color potential. Recent research has explored black pigmented calcium aluminosilicate glass (BPCG), a specialized material known for its unique properties, which holds promise for transforming the color capabilities of traditional ceramics.

Design/methodology/approach

In this investigation, initially composite ceramic sample (B-1) was prepared by milling process prior to sieve analysis to attain the particle size within 44 microns. Microanalysis and morphology and thermography were studied by energy-dispersive X-ray spectroscopy, scanning electron microscope and thermogravimetric analysis and found Sample-B-1 received attractive properties like firing shrinkage, porosity, bulk density and firing strength along with good pyro-plastic properties at various temperatures like 950°C, 1050°C, 1000°C and 1180°C. Furthermore, BPCG-assisted pigmented ceramic composites were synthesized with B-1 matrix. CIE lab investigation of the attributed composites (C-series) within selective soaking range of 5–20 min was performed, and the investigation found that prominent black hue appeared (L: 24.09, a*: −0.17, b*: −0.49) for C-10 containing appeared phases of Di-Co-Silicide (26%), Ni-Chromite, Stilpnomelane (rich in iron) as obtained by X-ray diffraction studies.

Findings

Ceramic material played a significant role in the realms of art and craft, as well as in technology. The artistic facet reveals concepts or ornamentation, while the craft echoes both traditional and functional appeal. Technology, on the other hand, involves the logical implementation behind the creation.

Originality/value

This C-10 Sample comprised the lower percentage of mullite which attributed that the BPCG homogeneously mixed in the matrix of base (B-1) and appeared as spinal staff. Therefore, BPCG was a potential candidate for ceramic metallization, and this traditional metallization processes often faced some challenges like uniformity and mixing in the ceramic composite domain practices. This study aimed to open up new avenues for artistic decoration and bridging the gap between traditional craftsmanship and modern technology. Furthermore, BPCG’s role in color assessment through shocking techniques added an exciting concept for the ceramic practitioners, designers or ceramic educators.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 118