Search results

1 – 10 of 37
Open Access
Article
Publication date: 22 November 2018

Adrian Chun Hin Lai and Adrian Wing-Keung Law

Incineration has become increasingly important in many large cities around the world because of fast urbanization and population growth. The benefits of energy production and…

1642

Abstract

Purpose

Incineration has become increasingly important in many large cities around the world because of fast urbanization and population growth. The benefits of energy production and large reduction in the waste volume to landfills also contribute to its growing adaptation for solid waste management for these cities. At the same time, the environmental impact of the pollutant gases emitted from the incineration process is a common concern for various stakeholders which must be properly addressed. To minimize the pollutant gas emission levels, as well as maximize the energy efficiency, it is critically important to optimize the combustion performance of an incinerator freeboard which would require the development of reliable approaches based on computational fluid dynamics (CFD) modeling. A critical task in the CFD modeling of an incinerator furnace requires the specification of waste characteristics along the moving grate as boundary conditions, which is not available in standard CFD packages at present. This study aims to address this gap by developing a numerical incinerator waste bed model.

Design/methodology/approach

A one-dimensional Lagrangian model for the incineration waste bed has been developed, which can be coupled to the furnace CFD model. The changes in bed mass due to drying, pyrolysis, devolatilization and char oxidation are all included in the model. The mass and concentration of gases produced in these processes through reactions are also predicted. The one-dimensional unsteady energy equations of solid and gas phases, which account for the furnace radiation, conduction, convection and heat of reactions, are solved by the control volume method.

Findings

The Lagrangian model is validated by comparing its prediction with the experimental data in the literature. The predicted waste bed height reduction, temperature profile and gas concentration are in reasonable agreement with the observations.

Originality/value

The simplicity and efficiency of the model makes it ideally suitable to be used for coupling with the computational furnace model to be developed in future (so as to optimize incinerator designs).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 16 April 2020

Chia-Jui Hsu, Jenifer Barrirero, Rolf Merz, Andreas Stratmann, Hisham Aboulfadl, Georg Jacobs, Michael Kopnarski, Frank Mücklich and Carsten Gachot

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear…

1662

Abstract

Purpose

To decrease wear and friction, zinc dialkyldithiophosphate (ZDDP) has been used in engine oil for several decades, but the mechanism of the tribofilm formation is still unclear. The purpose of this study is to characterize the chemical details of the tribofilm by using high-resolution approaching.

Design/methodology/approach

An ISO VG 100 mineral oil mixed with ZDDP was used in sliding tests on cylindrical roller bearings. Tribofilm formation was observed after 2 h of the sliding test. X-ray photoelectron spectroscopy (XPS) and atom probe tomography (APT) were used for chemical analysis of the tribofilm.

Findings

The results show that the ZDDP tribofilm consists of the common ZDDP elements along with iron oxides. A considerable amount of zinc and a small amount of sulfur were observed. In particular, an oxide interlayer with sulfur enrichment was revealed by APT between the tribofilm and the steel substrate. The depth profile of the chemical composition was obtained, and a tribofilm of approximately 40 nm thickness was identified by XPS.

Originality/value

A sulfur enrichment at the interface is observed by APT, which is beneath an oxygen enrichment. The clear evidence of the S interlayer confirms the hard and soft acids and bases principle.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2020-0035/

Details

Industrial Lubrication and Tribology, vol. 72 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 27 July 2023

Aicha Gasmi, Marc Heran, Noureddine Elboughdiri, Lioua Kolsi, Djamel Ghernaout, Ahmed Hannachi and Alain Grasmick

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Abstract

Purpose

The main purpose of this study resides essentially in the development of a new tool to quantify the biomass in the bioreactor operating under steady state conditions.

Design/methodology/approach

Modeling is the most relevant tool for understanding the functioning of some complex processes such as biological wastewater treatment. A steady state model equation of activated sludge model 1 (ASM1) was developed, especially for autotrophic biomass (XBA) and for oxygen uptake rate (OUR). Furthermore, a respirometric measurement, under steady state and endogenous conditions, was used as a new tool for quantifying the viable biomass concentration in the bioreactor.

Findings

The developed steady state equations simplified the sensitivity analysis and allowed the autotrophic biomass (XBA) quantification. Indeed, the XBA concentration was approximately 212 mg COD/L and 454 mgCOD/L for SRT, equal to 20 and 40 d, respectively. Under the steady state condition, monitoring of endogenous OUR permitted biomass quantification in the bioreactor. Comparing XBA obtained by the steady state equation and respirometric tool indicated a percentage deviation of about 3 to 13%. Modeling bioreactor using GPS-X showed an excellent agreement between simulation and experimental measurements concerning the XBA evolution.

Originality/value

These results confirmed the importance of respirometric measurements as a simple and available tool for quantifying biomass.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 25 January 2010

Maartje Cathelijne de Jong and Cornelis Hendrikus Boersma

Exposure therapy is a widely used treatment for patients with post-traumatic stress dis -order. It involves reduction of fear through progressive exposure to frightening stimuli…

Abstract

Exposure therapy is a widely used treatment for patients with post-traumatic stress dis -order. It involves reduction of fear through progressive exposure to frightening stimuli in a therapeutic environment. Here we propose a new method designed to improve the effectiveness of exposure therapy. We hypothesized that device-guided breathing during exposure therapy can increase the capability of the patient to undergo effective exposure. The successful application of the method is described for a single patient. Using a device to slow and regularize breathing, the patient was calmed and experienced a greater sense of control and a profound effect of the exposure. The use of the breathing-guiding device is believed to reduce arousal level and excitability of sympathetic “fight-flight” behaviors. The present study suggests that device-guided breathing integrated with exposure therapy may provide a practically feasible and potentially promising non-pharmacological treatment after trauma.

Details

Mental Illness, vol. 2 no. 1
Type: Research Article
ISSN: 2036-7465

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5461

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

1972

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 31 August 2023

Jingjing Shi, Ning Qian, Honghua Su, Ying Yang and Yiping Wang

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current…

Abstract

Purpose

The electrical properties of piezoelectric vibrators have a crucial influence on the operating state of ultrasonic motors. In order to solve the problem that the current piezoelectric vibrator generates a large amount of heat during vibration to degrade its performance, which in turn affects the normal operation of ultrasonic motors, this paper prepares a novel piezoelectric vibrator and tests its maximum vibration velocity under the working condition, which is more than twice as much as that of the current commercial PZT-8.

Design/methodology/approach

The crystal structures of the samples were analyzed by using an X-ray diffractometer. For microstructure observation, samples were observed by scanning electron microscope (SEM). The quasi-static piezoelectric coefficient meter (ZJ-3AN) was used for piezoelectric measurement. Dielectric properties were measured by utilizing an impedance analyzer (Agilent 4294A) with a laboratory heating unit. Ferroelectric hysteresis loops were obtained using a ferroelectric analyzer (Radiant, Multiferroic 100). A Doppler laser vibrometer (Polytec PSV-300F, Germany) and a power amplifier were used for piezoelectric vibration measurements, during which the temperature rise was determined by an infrared radiation thermometer (Victor 303, China).

Findings

The ceramics exhibit enhanced piezoelectric performance at 0.1–0.4 mol% of Yb doping contents. The ceramic of 0.4 mol% Yb reaches the maximal internal bias field and presents a larger mechanical quality factor of 1,692 compared with that of 0.2 mol% Yb-doped ceramic, in spite of a slightly decreased dielectric constant of 439 pC/N, the unit of the piezoelectric constant, which is the ratio of the local charge (pC) to the frontal force (N) and electromechanical coupling coefficient of 0.63. The vibrator with this large mechanical quality factor ceramic displays a vibration velocity of up to 0.81 m/s under the constraint of 20 °C temperature rising, which is much higher than commercial high-power piezoelectric ceramics PZT-8.

Originality/value

The enhanced high-power properties of the piezoelectric vibrator by Yb doping may provide a potential application for the high-performance USM and offer the possibility of long-term stable operation under high power for special equipment like USM. In the subsequent phase of research, the novel PZT-based high-power piezoelectric vibrator can be utilized in the USM, and the motor's performance will be evaluated under aerospace conditions to objectively assess the reliability of the piezoelectric vibrator.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 3
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 11 February 2022

Folasade Olabimpe Adeboyejo, Olaide Ruth Aderibigbe, Fehintola Oluwatosin Ojo and Steven Akintomide Fagbemi

Several factors may play critical roles in alterations to product quality during storage of hog plum juice. This study aims to evaluate variations to physicochemical, antioxidant…

1176

Abstract

Purpose

Several factors may play critical roles in alterations to product quality during storage of hog plum juice. This study aims to evaluate variations to physicochemical, antioxidant, anti-nutritional properties and microbial stability of hog plum juice during storage.

Design/methodology/approach

Juice was produced from hog plum fruits and stored for eight weeks at refrigerated and ambient conditions. Physicochemical, antioxidant properties, antinutritional factors and microbial properties of juices were determined using standard procedures

Findings

Degradation of ascorbic acid was higher in juices stored at ambient conditions (64.4%) compared to those stored by refrigeration (44.4%). Trends were similar for total phenolic, total flavonoid and total carotenoid contents. Total phenolic, total carotenoid and lycopene contents of fresh juice were 3.9 mg GAE/mL, 4.0 mg/mL and 1.3 mg/mL, which were not significantly different (at p = 0.08, 0.07 and 0.08, respectively) from the values at two weeks of storage at refrigerated conditions (3.9 mg GAE/mL, 3.9 mg/mL and 1.3 mg/mL). A sharp decrease of more than 40% (p = 0.02) in lycopene was recorded after four weeks, irrespective of storage temperature. Pasteurized hog plum juice showed no microbial growth until after four weeks of refrigerated storage when 1 CFU/mL each of bacterial and fungal growth were recorded. The juices, however, showed higher susceptibility to fungal growth as storage period increased.

Research limitations/implications

Other variables not considered in this study such as nature of packaging materials may have significantly contributed to the observed data set. Further studies may, therefore, widen the scope of discussion to evaluate the associated relationship of these variables. Hog plum juice retained a considerable amount of bioactive components during refrigerated storage, which makes it a viable nutraceutical drink with industrial potentials and possible positive health implications for consumers.

Practical implications

This study provides new information that support the possible classification and use of hog plum juice as a safe functional beverage for human consumption.

Originality/value

Although the effect of storage temperature was significant in most of the properties studied, storage duration seems to have a greater influence on the stability of quality parameters during the storage of hog plum juice.

Details

Nutrition & Food Science , vol. 52 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 37