Search results

1 – 10 of over 1000
Article
Publication date: 1 June 1954

L.L. Shreir

The corrosion of metals can be reduced or prevented by influencing the electrode processes of electrochemical corrosion cells with suitable chemical additions to the corrosive…

Abstract

The corrosion of metals can be reduced or prevented by influencing the electrode processes of electrochemical corrosion cells with suitable chemical additions to the corrosive electrolyte. It is the purpose of these articles to consider the mechanism of inhibition, and the applications and limitations of typical inhibitors. This first article is devoted to a consideration of the principles of inhibition in aqueous neutral solutions.

Details

Anti-Corrosion Methods and Materials, vol. 1 no. 6
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 October 2004

Andrew Hancock and Long Lin

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the…

2022

Abstract

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the application of UV curing technology in ink‐jet printing. Several reasons, including the requirement of low viscosity for ink‐jet printing inks, were responsible for the lack of development of UV curable ink‐jet printing inks. This paper describes, in some details, the challenges that a formulator had to face in developing UV curable ink‐jet printing inks, together with information on the status quo of UV curable ink‐jet printing technology.

Details

Pigment & Resin Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2002

V.S. Saji and S.M.A. Shibli

Tungstate inhibitors are seldom used alone in open recirculating cooling water systems due to their low oxidising ability and high cost. The objective of the present work was to…

Abstract

Tungstate inhibitors are seldom used alone in open recirculating cooling water systems due to their low oxidising ability and high cost. The objective of the present work was to develop efficient synergistic inhibitor combinations comprising sodium silicate and very low concentration of sodium tungstate, keeping in view of their application in industrial cooling water system. It was demonstrated in the present study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. It was also established that a 4:1 ratio of sodium silicate to sodium tungstate (total 1,000 ppm) was the best overall combination. The FTIR spectra also suggest that tungstate and silicate ions were incorporated in the passivating metal oxide layer formed on the surface of carbon steel in the inhibitor solutions. The effects of excess and depleted concentrations of the individual inhibitor components on overall inhibition behaviour are also discussed.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 18 April 2016

Jian Zhou, Qiuyu Zhang, Hepeng Zhang, Jiaojun Tan, Shaojie Chen, Qing Liu, Mingliang Ma and Tiejun Xin

The purpose of this paper is to evaluate the properties of several thiol-acrylate photosensitive systems and compare with corresponding acrylate free-radical systems. The…

Abstract

Purpose

The purpose of this paper is to evaluate the properties of several thiol-acrylate photosensitive systems and compare with corresponding acrylate free-radical systems. The potential stereolithography applications of thiol–ene photosensitive systems are also discussed.

Design/methodology/approach

In the both thiol–ene and acrylate free-radical photosensitive systems, various key performances were characterized. The function group conversions were characterized by real-time Fourier transform infrared spectroscopy. The tension strength was determined according to the standard ASTM D638-2003, the flexible strength was determined according to ASTM D790-07 and the hardness was measured according to ASTM D2240-05. The volume shrinkage was measured by dilatometer method. The glass transition temperature was analyzed by differential scanning calorimeter.

Findings

As adding mercapto propionates into acrylate system, the inhibition of polymerization by oxygen was controlled and the flexible performance was improved. In addition, the photosensitive resin showed better tension strength, higher elongation at break and lower volume shrinkage. Among the four mercapto propionates, rigid TEMPIC showed most obvious affect, followed hexa-functional DPMP, tetra-functional PETMP and tri-functional TMMP.

Originality/value

Although the thiol–ene photosensitive resin has unmatched advantages in performance, there are no reports on the thiol–ene photosensitive resin in the stereolithography application. In this study, thiol–ene photopolymerization material was first tentatively implemented in stereolithography area. Several critical performance parameters were compared between thiol–ene and acrylate free-radical photosensitive systems.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1995

J.H. Choi

Photoresist imaging traditionally uses silver halide or diazo based phototools for contact exposure to an actinic UV light source. By contrast, laser direct imaging uses digital…

Abstract

Photoresist imaging traditionally uses silver halide or diazo based phototools for contact exposure to an actinic UV light source. By contrast, laser direct imaging uses digital imaging data to control a laser beam scanner to write directly on to the photoresist, therefore eliminating the need for phototools. In the past, even though the benefit of a UV system was recognised, laser direct imaging was mainly limited to the use of a visible laser as early UV lasers were low in power, unreliable and expensive. So far, no visible systems have gained commercial recognition because of the inherent deficiencies of the visible system. Recent advantages in UV laser equipment and UV sensitive photoresist have now made UV laser direct imaging a viable alternative to traditional contact imaging. As new UV laser imaging systems start to emerge, interest and attention are also growing among printed circuit board manufacturers. This paper discusses various attributes of a UV laser direct imaging system and fundamental differences in photophysics between laser direct imaging and conventional UV imaging.

Details

Circuit World, vol. 21 no. 4
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 9 August 2011

Gabriela Kalčíková, Milada Vávrová, Jana Zagorc-Končan and Andreja Žgajnar Gotvajn

The aim of this work is to compare quality of leachates from regional municipal landfill in different seasons (dry, snowy/rainy) during a three-year monitoring period due to the…

Abstract

Purpose

The aim of this work is to compare quality of leachates from regional municipal landfill in different seasons (dry, snowy/rainy) during a three-year monitoring period due to the fact that quality of landfill leachate can rapidly change under different conditions.

Design/methodology/approach

Raw leachates were sampled prior to biological treatment at different periods of the year (November 2007, March 2008, May 2008, March 2009, and January 2010) to detect the changes in their composition due to different physico-chemical conditions at the site (temperature, moisture, etc.). Leachates were physico-chemically characterized and the toxicity of chosen leachates was assessed by a battery of biotests.

Findings

Most of the investigated raw leachates exceed Slovenian effluent limits. Samples from March 2008 and March 2009 generally showed higher concentration of measured parameters and also higher toxicity. It has been confirmed that the physico-chemical parameters of leachates usually decrease during rainy/snowy seasons, in addition to the change in toxicity.

Originality/value

This paper demonstrates the need to evaluate the physico-chemical parameters and toxicity of landfill leachate during different seasons of the year to achieve an appropriate assessment of its environmental impact.

Details

Management of Environmental Quality: An International Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 October 2018

Wenxiong Lin, Huagang Liu, Haizhou Huang, Jianhong Huang, Kaiming Ruan, Zixiong Lin, Hongchun Wu, Zhi Zhang, Jinming Chen, Jinhui Li, Yan Ge, Jie Zhong, Lixin Wu and Jie Liu

The purpose of this paper is to explore the possibility of an enhanced continuous liquid interface production (CLIP) with a porous track-etched membrane as the oxygen-permeable…

Abstract

Purpose

The purpose of this paper is to explore the possibility of an enhanced continuous liquid interface production (CLIP) with a porous track-etched membrane as the oxygen-permeable window, which is prepared by irradiating polyethylene terephthalate membranes with accelerated heavy ions.

Design/methodology/approach

Experimental approaches are carried out to characterize printing parameters of resins with different photo-initiator concentrations by a photo-polymerization matrix, to experimentally observe and theoretically fit the oxygen inhibition layer thickness during printing under conditions of pure oxygen and air, respectively, and to demonstrate the enhanced CLIP processes by using pure oxygen and air, respectively.

Findings

Owing to the high permeability of track-etched membrane, CLIP process is demonstrated with printing speed up to 800 mm/h in the condition of pure oxygen, which matches well with the theoretically predicted maximum printing speed at difference light expose. Making a trade-off between printing speed and surface quality, maximum printing speed of 470 mm/h is also obtained even using air. As the oxygen inhibition layer created by air is thinner than that by pure oxygen, maximum speed cannot be simply increased by intensifying the light exposure as the case with pure oxygen.

Originality/value

CLIP process is capable of building objects continuously instead of the traditional layer-by-layer manner, which enables tens of times improvement in printing speed. This work presents an enhanced CLIP process by first using a porous track-etched membrane to serve as the oxygen permeable window, in which a record printing speed up to 800 mm/h using pure oxygen is demonstrated. Owing to the high permeability of track-etched membrane, continuous process at a speed of 470 mm/h is also achieved even using air instead of pure oxygen, which is of significance for a compact robust high-speed 3D printer.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 April 2011

Amit S. Jariwala, Fei Ding, Aparna Boddapati, Victor Breedveld, Martha A. Grover, Clifford L. Henderson and David W. Rosen

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the…

1372

Abstract

Purpose

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the cured parts. SL is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid with a UV laser light source. Traditional models of SL processes do not consider the complex chemical reactions and species transport occurring during photopolymerization and, hence, are incapable of accurately predicting resin curing behavior. The model presented in this paper attempts to bridge this knowledge gap.

Design/methodology/approach

The chemical reactions involved in the photopolymerization of acrylate‐based monomers were modeled as ordinary differential equations (ODE). This model incorporated the effect of oxygen inhibition and diffusion on the polymerization reaction. The model was simulated in COMSOL and verified with experiments conducted on a mask‐based micro‐SL system. Parametric studies were conducted to investigate the possibilities to improve the accuracy of the model for predicting the edge curvature.

Findings

The proposed model predicts well the effect of oxygen inhibition and diffusion on photopolymerization, and the model accurately predicts the cured part height when compared to experiments conducted on a mask‐based SL system. The simulated results also show the characteristic edge curvature as seen in experiments.

Research limitations/implications

A triacrylate monomer was used in the experiments conducted, so results may be limited to acrylate monomers. Shrinkage was not considered when comparing cured part shapes to those predicted using COMSOL.

Originality/value

This paper presents a unique and a pioneering approach towards modeling of the photopolymerization reaction in micro‐SL process. This research furthers the development of patent pending film micro‐SL process which can be used for fabrication of custom micro‐optical components.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 March 2017

Yayue Pan, Haiyang He, Jie Xu and Alan Feinerman

Recently, the constrained surface projection stereolithography (SL) technology is gaining wider attention and has been widely used in the 3D printing industry. In constrained…

1094

Abstract

Purpose

Recently, the constrained surface projection stereolithography (SL) technology is gaining wider attention and has been widely used in the 3D printing industry. In constrained surface projection SL systems, the separation of a newly cured layer from the constrained surface is a historical technical barrier. It greatly limits printable size, process reliability and print speed. Moreover, over-large separation force leads to adhesion failures in manufacturing processes, causing broken constrained surface and part defects. Against this background, this paper investigates the formation of separation forces and various factors that affect the separation process in constrained surface projection SL systems.

Design/methodology/approach

A bottom-up projection SL testbed, integrated with an in-situ separation force measurement unit, is developed for experimental study. Separation forces under various manufacturing process settings and constrained surface conditions are measured in situ. Additionally, physical models are constructed by considering the liquid resin filling process. Experiments are conducted to investigate influences of manufacturing process settings, constrained surface condition and print geometry on separation forces.

Findings

Separation forces increase linearly with the separation speed. The deformation and the oxygen inhibition layer near the constrained surface greatly reduce separation forces. The printing area, area/perimeter ratio and the degree of porousness of print geometries have a combined effect on determining separation forces.

Originality/value

This paper studied factors that influence separation force in constrained surface SL processes. Constrained surface conditions including oxygen inhibition layer thickness, deformation and oxygen permeation capability were investigated, and their influences on separation forces were revealed. Moreover, geometric factors of printing layers that are significant on determining separation forces have been identified and quantified. This study on separation forces provides a solid base for future work on adaptive control of constrained surface projection SL processes.

Article
Publication date: 6 March 2017

Yunze Xu, Yi Huang, Limin He, Fei Yang and Xiaona Wang

In this study the aim was to investigate under-deposit corrosion (UDC) behavior and the action effects of amino trimethylene phosphonic acid (ATMP) in the oxygen-contained…

Abstract

Purpose

In this study the aim was to investigate under-deposit corrosion (UDC) behavior and the action effects of amino trimethylene phosphonic acid (ATMP) in the oxygen-contained solution.

Design/methodology/approach

Electrochemical methods and wire beam electrode techniques were used for the study of ATMP action effect for X65 steel under silica sand and CaCO3 particle deposit. Electronic coupon technique was used for the study of galvanic effect caused by the deposits and the action effect of ATMP.

Findings

ATMP would cause localized corrosion for the silica sand-covered steel. However, it could inhibit the localized corrosion of the steel beneath CaCO3 particle deposit. Galvanic effect test showed that the galvanic effect caused by the deposits was an important factor for the acceleration of UDC. ATMP had an obvious promotion effect for the galvanic current between bare coupon and silica sand covered coupon and different degrees of localized corrosion were observed beneath both deposits.

Originality/value

The authors believe that the paper may be of particular interest to the readers of the journal as the measurement methods for the UDC of X65 pipeline steel. The experiment they did in the laboratory found that the inhibitor ATMP has a good inhibition effect for bare steel, but it would accelerate the UDC. Different kinds of deposits would have different influences for the UDC behavior with inhibitor added.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000