Search results

1 – 10 of 969
Article
Publication date: 20 March 2017

Yayue Pan, Haiyang He, Jie Xu and Alan Feinerman

Recently, the constrained surface projection stereolithography (SL) technology is gaining wider attention and has been widely used in the 3D printing industry. In constrained…

1087

Abstract

Purpose

Recently, the constrained surface projection stereolithography (SL) technology is gaining wider attention and has been widely used in the 3D printing industry. In constrained surface projection SL systems, the separation of a newly cured layer from the constrained surface is a historical technical barrier. It greatly limits printable size, process reliability and print speed. Moreover, over-large separation force leads to adhesion failures in manufacturing processes, causing broken constrained surface and part defects. Against this background, this paper investigates the formation of separation forces and various factors that affect the separation process in constrained surface projection SL systems.

Design/methodology/approach

A bottom-up projection SL testbed, integrated with an in-situ separation force measurement unit, is developed for experimental study. Separation forces under various manufacturing process settings and constrained surface conditions are measured in situ. Additionally, physical models are constructed by considering the liquid resin filling process. Experiments are conducted to investigate influences of manufacturing process settings, constrained surface condition and print geometry on separation forces.

Findings

Separation forces increase linearly with the separation speed. The deformation and the oxygen inhibition layer near the constrained surface greatly reduce separation forces. The printing area, area/perimeter ratio and the degree of porousness of print geometries have a combined effect on determining separation forces.

Originality/value

This paper studied factors that influence separation force in constrained surface SL processes. Constrained surface conditions including oxygen inhibition layer thickness, deformation and oxygen permeation capability were investigated, and their influences on separation forces were revealed. Moreover, geometric factors of printing layers that are significant on determining separation forces have been identified and quantified. This study on separation forces provides a solid base for future work on adaptive control of constrained surface projection SL processes.

Article
Publication date: 19 April 2013

Chi Zhou, Yong Chen, Zhigang Yang and Behrokh Khoshnevis

The purpose of this paper is to present a mask‐image‐projection‐based stereolithography (MIP‐SL) process that can combine two base materials with various concentrations and…

4144

Abstract

Purpose

The purpose of this paper is to present a mask‐image‐projection‐based stereolithography (MIP‐SL) process that can combine two base materials with various concentrations and structures to produce a solid object with desired material characteristics. Stereolithography is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid. The fabrication of digital material requires frequent resin changes during the building process. The process presented in this paper attempts to address the related challenges in achieving such fabrication capability.

Design/methodology/approach

A two‐channel system design is presented for the multi‐material MIP‐SL process. In such a design, a coated thick film and linear motions in two axes are used to reduce the separation force of a cured layer. The material cleaning approach to thoroughly remove resin residue on built surfaces is presented for the developed process. Based on a developed testbed, experimental studies were conducted to verify the effectiveness of the presented process on digital material fabrication.

Findings

The proposed two‐channel system can reduce the separation force of a cured layer by an order of magnitude in the bottom‐up projection system. The developed two‐stage cleaning approach can effectively remove resin residue on built surfaces. Several multi‐material designs have been fabricated to highlight the capability of the developed MIP‐SL process.

Research limitations/implications

A proof‐of‐concept testbed has been developed. Its building speed and accuracy can be further improved. The tests were limited to the same type of liquid resins. In addition, the removal of trapped air is a challenge in the presented process.

Originality/value

This paper presents a novel and a pioneering approach towards digital material fabrication based on the stereolithography process. This research contributes to the additive manufacturing development by significantly expanding the selection of base materials in fabricating solid objects with desired material characteristics.

Article
Publication date: 18 October 2018

Xiangquan Wu, Qin Lian, Dichen Li and Zhongmin Jin

This study aims to develop a multi-material stereolithography (MMSL) technique to directly fabricate a biphasic osteochondral scaffold.

Abstract

Purpose

This study aims to develop a multi-material stereolithography (MMSL) technique to directly fabricate a biphasic osteochondral scaffold.

Design/methodology/approach

A bespoke prototype MMSL system was developed based on a bottom-up mask projection approach. The system was controlled by a multi-material fabrication algorithm with minimum number of switching cycles during fabrication. A variable-power light source was used to fabricate materials with significantly different curing characteristics. The light-curable poly(ethylene glycol) diacrylate (PEGDA) hydrogel and beta-tricalcium phosphate (β-TCP) ceramic suspension were used for fabricating the biphasic osteochondral scaffold.

Findings

The bonding strength of the multi-material interface is shown to be mainly affected by the type of photopolymer, rather than the switching of the materials in MMSL. Lighting power densities of 2.64 and 14.98 mW/cm2 were used for curing the PEGDA hydrogel and the ß-TCP ceramic suspension, respectively. A biphasic osteochondral scaffold with complex interface was successfully fabricated.

Originality/value

This study proposes a potential technical method (MMSL) for manufacturing a complex biphasic osteochondral scaffold composing a PEGDA hydrogel/ß-TCP ceramic composite in a time-efficient and precise manner. The designed bone-cartilage scaffold interface and the surface of the cartilage scaffold can be precisely manufactured.

Article
Publication date: 16 January 2017

Xuan Song, Zeyu Chen, Liwen Lei, Kirk Shung, Qifa Zhou and Yong Chen

Conventional machining methods for fabricating piezoelectric components such as ultrasound transducer arrays are time-consuming and limited to relatively simple geometries. The…

1079

Abstract

Purpose

Conventional machining methods for fabricating piezoelectric components such as ultrasound transducer arrays are time-consuming and limited to relatively simple geometries. The purpose of this paper is to develop an additive manufacturing process based on the projection-based stereolithography process for the fabrication of functional piezoelectric devices including ultrasound transducers.

Design/methodology/approach

To overcome the challenges in fabricating viscous and low-photosensitive piezocomposite slurry, the authors developed a projection-based stereolithography process by integrating slurry tape-casting and a sliding motion design. Both green-part fabrication and post-processing processes were studied. A prototype system based on the new manufacturing process was developed for the fabrication of green-parts with complex shapes and small features. The challenges in the sintering process to achieve desired functionality were also discussed.

Findings

The presented additive manufacturing process can achieve relatively dense piezoelectric components (approximately 95 per cent). The related property testing results, including X-ray diffraction, scanning electron microscope, dielectric and ferroelectric properties as well as pulse-echo testing, show that the fabricated piezo-components have good potentials to be used in ultrasound transducers and other sensors/actuators.

Originality/value

A novel bottom-up projection system integrated with tape casting is presented to address the challenges in the piezo-composite fabrication, including small curing depth and viscous ceramic slurry recoating. Compared with other additive manufacturing processes, this method can achieve a thin recoating layer (as small as 10 μm) of piezo-composite slurry and can fabricate green parts using slurries with significantly higher solid loadings. After post processing, the fabricated piezoelectric components become dense and functional.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 November 2018

Lifang Wu, Lidong Zhao, Meng Jian, Yuxin Mao, Miao Yu and Xiaohua Guo

In some three-dimensional (3D) printing application scenarios, e.g., model manufacture, it is necessary to print large-sized objects. However, it is impossible to implement…

1378

Abstract

Purpose

In some three-dimensional (3D) printing application scenarios, e.g., model manufacture, it is necessary to print large-sized objects. However, it is impossible to implement large-size 3D printing using a single projector in digital light processing (DLP)-based mask projection 3D printing because of the limitations of the digital micromirror device chips.

Design/methodology/approach

A multi-projector DLP with energy homogenization (EHMP-DLP) scheme is proposed for large-size 3D printing. First, a large-area printing plane is established by tiling multiple projectors. Second, the projector set’s tiling pattern is obtained automatically, and the maximum printable plane is determined. Third, the energy is homogenized across the entire printable plane by adjusting gray levels of the images input into the projectors. Finally, slices are automatically segmented based on the tiling pattern of the projector set, and the gray levels of these slices are reassigned based on the images of the corresponding projectors.

Findings

Large-area high-intensity projection for mask projection 3D printing can be performed by tiling multiple DLP projectors. The tiled projector output energies can be homogenized by adjusting the images of the projectors. Uniform ultraviolet energy is important for high-quality printing.

Practical implications

A prototype device is constructed using two projectors. The printable area becomes 140 × 210 mm from the original 140 × 110 mm.

Originality/value

The proposed EHMP-DLP scheme enables 3D printing of large-size objects with linearly increasing printing times and high printing precision. A device was established using two projectors to practice the scheme and can easily be extended to larger sizes by using more projectors.

Article
Publication date: 2 June 2021

Huachao Mao, Wenxuan Jia, Yuen-Shan Leung, Jie Jin and Yong Chen

This paper aims to present a multi-material additive manufacturing (AM) process with a newly developed curing-on-demand method to fabricate a three-dimensional (3D) object with…

Abstract

Purpose

This paper aims to present a multi-material additive manufacturing (AM) process with a newly developed curing-on-demand method to fabricate a three-dimensional (3D) object with multiple material compositions.

Design/methodology/approach

Unlike the deposition-on-demand printing method, the proposed curing-on-demand printheads use a digital light processing (DLP) projector to selectively cure a thin layer of liquid photocurable resin and then clean the residual uncured material effectively using a vacuuming and post-curing device. Each printhead can individually fabricate one type of material using digitally controlled mask image patterns. The proposed AM process can accurately deposit multiple materials in each layer by combining multiple curing-on-demand printheads together. Consequently, a three-dimensional object can be fabricated layer-by-layer using the developed curing-on-demand printing method.

Findings

Effective cleaning of uncured resin is realized with reduced coated resin whose height is in the sub-millimeter level and improved vacuum cleaning performance with the uncleaned resin less than 10 µm thick. Also, fast material swapping is achieved using the compact design of multiple printheads.

Originality/value

The proposed multi-material stereolithography (SL) process enables 3D printing components using more viscous materials and can achieve desired manufacturing characteristics, including high feature resolution, fast fabrication speed and low machine cost.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 May 2018

Ji Li, Thomas Wasley, Duong Ta, John Shephard, Jonathan Stringer, Patrick J. Smith, Emre Esenturk, Colm Connaughton, Russell Harris and Robert Kay

This paper aims to demonstrate the improved functionality of additive manufacturing technology provided by combining multiple processes for the fabrication of packaged electronics.

Abstract

Purpose

This paper aims to demonstrate the improved functionality of additive manufacturing technology provided by combining multiple processes for the fabrication of packaged electronics.

Design/methodology/approach

This research is focused on the improvement in resolution of conductor deposition methods through experimentation with build parameters. Material dispensing with two different low temperature curing isotropic conductive adhesive materials was characterised for their application in printing each of three different conductor designs, traces, z-axis connections and fine pitch flip chip interconnects. Once optimised, demonstrator size can be minimised within the limitations of the chosen processes and materials.

Findings

The proposed method of printing z-axis through layer connections was successful with pillars 2 mm in height and 550 µm in width produced. Dispensing characterisation also resulted in tracks 134 µm in width and 38 µm in height allowing surface mount assembly of 0603 components and thin-shrink small outline packaged integrated circuits. Small 149-µm flip chip interconnects deposited at a 457-µm pitch have also been used for packaging silicon bare die.

Originality/value

This paper presents an improved multifunctional additive manufacturing method to produce fully packaged multilayer electronic systems. It discusses the development of new 3D printed, through layer z-axis connections and the use of a single electrically conductive adhesive material to produce all conductors. This facilitates the surface mount assembly of components directly onto these conductors before stereolithography is used to fully package multiple layers of circuitry in a photopolymer.

Article
Publication date: 16 January 2017

Hengky Eng, Saeed Maleksaeedi, Suzhu Yu, Yu Ying Clarrisa Choong, Florencia Edith Wiria, Ruihua Eugene Kheng, Jun Wei, Pei-Chen Su and Huijun Phoebe Tham

Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as…

Abstract

Purpose

Polymeric parts produced by 3D stereolithography (SL) process have poorer mechanical properties as compared to their counterparts fabricated via conventional methods, such as injection or compression molding. Adding nanofillers in the photopolymer resin for SL could help improve mechanical properties. This study aims to achieve enhancement in mechanical properties of parts fabricated by SL, for functional applications, by using well-dispersed nanofillers in the photopolymers, together with suitable post-processing.

Design/methodology/approach

Carbon nanotubes (CNTs) have high strength and Young’s modulus, making them attractive nanofillers. However, dispersion of CNTs in photopolymer is a critical challenge, as they tend to agglomerate easily. Achieving good dispersion is crucial to improve the mechanical properties; thus, suitable dispersion mechanisms and processes are examined. Solvent exchange process was found to improve the dispersion of multiwalled carbon nanotubes in the photopolymer. The UV-absorbing nature of CNTs was also discovered to affect the curing properties. With suitable post processing, coupled with thermal curing, the mechanical properties of SL parts made from CNTs-filled resin improved significantly.

Findings

With the addition of 0.25 wt.% CNTs into the photopolymer, tensile stress and elongation of the 3D printed parts increased by 70 and 46 per cent, respectively. With the significant improvement, the achieved tensile strength is comparable to parts manufactured by conventional methods.

Practical implications

This allows functional parts to be manufactured using SL.

Originality/value

In this paper, an improved procedure to incorporate CNTs into the photopolymer was developed. Furthermore, because of strong UV-absorption nature of CNTs, curing properties of photopolymer and SL parts with and without CNT fillers were studied. Optimized curing parameters were determined and additional post-processing step for thermal curing was discovered as an essential step in order to further enhance the mechanical properties of SL composite parts.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2021

Xiangquan Wu, Chunjie Xu, Zhongming Zhang and Zhongmin Jin

This study aims to accurately simulate the tilting separation process of mask projection stereolithography (MPSL) and verify the tilting theory.

Abstract

Purpose

This study aims to accurately simulate the tilting separation process of mask projection stereolithography (MPSL) and verify the tilting theory.

Design/methodology/approach

The finite element separation models of MPSL 3D printing process were established. The established models simulated both tilting and pulling-up separation process by changing the constraints and boundary conditions. The bilinear cohesive curves were used to define the separation interface. The stress distribution of the cured part and FEP film at different times during the whole separation process was extracted. Different orientations of pulling-up and tilting were also compared for stress distribution. The stress change was analyzed for the center and edge points of the upper surface of cured part.

Findings

The results showed that the stress increased with the separation speed, and the stress at the edge position of exposure area was greater than the internal position. The tilting traction stress distribution was affected by the exposure area function and the velocity distribution. Alternation of the exposure area function changed the cohesive stiffness. The non-coincidence of the calculated traction stress with the input bilinear cohesive curve reflected the influence of the material properties and the separation methods. The high-speed side of tilting had fast separation and high traction stress.

Originality/value

This study proposes a technical method for simulation tilting separation and verified the tilting theory. The cohesive zone model was proved applicable to the tilting traction stress calculation.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2017

Hang Ye, Abhishek Venketeswaran, Sonjoy Das and Chi Zhou

One of the major concerns of the constrained-surface stereolithography (SLA) process is that the built-up part may break because of the force resulting from the pulling-up…

655

Abstract

Purpose

One of the major concerns of the constrained-surface stereolithography (SLA) process is that the built-up part may break because of the force resulting from the pulling-up process. This resultant force may become significant if the interface mechanism between the two contact surfaces (i.e. newly cured layer and the bottom of the resin vat) produces a strong bonding between them. The purpose of this paper is to characterize the separation process between the cured part and the resin vat by adopting an appropriate and simple mechanics-based model that can be used to probe the pulling-up process.

Design/methodology/approach

In this paper, the time-histories of the pulling-up forces are measured using FlexiForce® force sensors. The experimental data are analyzed and used to estimate the constitutive parameters of the separation mechanism. Here, the separation mechanism is modeled based on the concept of cohesive zone model (CZM) that is well-studied in the field of fracture mechanics. By using the experimentally measured pulling-up force, this paper proposes a very efficient inverse technique to estimate the constitutive parameters for the CZM. The constitutive laws for the CZM facilitate in relating the separation force at the interface between the cured part and the resin vat in terms of the pulling-up velocity. Unlike work proposed earlier, computationally expensive full-scale finite element runs are not essential in the current work while estimating the required parameters of the constitutive laws. Instead, mechanics-based computationally efficient surrogate model is proposed to readily estimate these constitutive parameters.

Findings

Two constitutive laws are compared on the basis of their predictions of the separation force profile. Excellent match is obtained between the measured and the predicted separation force profiles.

Originality/value

This paper selects a suitable mechanics-based model that can characterize the separation process and proposes a computationally efficient scheme to estimate the required constitutive parameters. The proposed scheme can be used to reliably predict the separation force for the constrained-surface SLA process, leading to improved productivity and reliability of the SLA processes in fabricating the built-up parts.

Details

Rapid Prototyping Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 969