Search results

1 – 10 of 217
Article
Publication date: 2 August 2024

Bingcheng Liu, Junyou Song and Wei Geng

This study aims to enhance an enterprise’s private cloud services by optimally determining the ownership of cloud computing resources and responsibility for maintenance and…

Abstract

Purpose

This study aims to enhance an enterprise’s private cloud services by optimally determining the ownership of cloud computing resources and responsibility for maintenance and operations. The core objective is to identify the most cost-effective private cloud deployment model at the intersection of technology and business considerations.

Design/methodology/approach

This study evaluates three ownership and responsibility models, each encompassing decisions related to candidate data center locations, resource provisioning, and demand placements. Drawing from the cloud computing literature, these models are referred to as deployment models. The research formulates a private cloud deployment model selection problem and introduces an established Lagrangian-relaxation-based optimization approach, combined with a novel greedy relieving-pooling heuristic, to facilitate model selection.

Findings

This study identifies the optimal deployment model for a representative instance using real test-bed data from the US, demonstrating the private cloud deployment model selection problem. Various numerical examples are analyzed to explore the influence of environmental parameters. Generally, the virtual PC model is optimal for low demand arrival rates and resource requirements, while the on-premises PC model is preferable for higher values of these parameters. Additionally, the virtual PC model is found to be optimal when enroute latency coefficients are large.

Originality/value

This study contributes to the literature by formulating an optimization problem that integrates performance, financial, and assurance metrics for enterprises. The introduction of a solution approach enables enterprises to make informed decisions regarding ownership and responsibility design. The study effectively bridges the gap between academic research and industry demands from a business perspective.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 August 2024

Lindsay Eastgate, Andrea Bialocerkowski, Peter Creed, Michelle Hood, Michael Anthony Machin, Paula Brough and Sonya Winterbotham

This study aims to examine the anticipated and actual challenges encountered by occupational therapy and physiotherapy students during their first full-time professional placement…

Abstract

Purpose

This study aims to examine the anticipated and actual challenges encountered by occupational therapy and physiotherapy students during their first full-time professional placement and to understand the strategies they implemented to manage their multiple life roles.

Design/methodology/approach

Longitudinal qualitative research examined students’ anticipated and reported challenges with their first block professional placement and the strategies they implemented during it. In total, 22 occupational therapy and physiotherapy students were interviewed at two time points (pre- and post-placement), producing 44 interview data points. Transcribed interviews were analysed thematically using a hybrid approach.

Findings

Pre-placement, students perceived potential challenges related to the distance between their placement location and where they resided and their ability to maintain balance in their multiple roles. Post-placement, the main reported challenge was maintaining role balance, due to unexpected challenges and students’ unanticipated tiredness. Students implemented strategies to assist with managing multiple roles and reflected on the benefits and drawbacks of placements. They also considered the necessary future adjustments.

Practical implications

This study highlighted the importance of social support and the need for proactive recovery strategies to negate the tiredness that students experienced on placement.

Originality/value

This is the first study, to our knowledge, to investigate how allied health students, on their first block of professional placement, balanced their multiple roles over time.

Details

Education + Training, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0040-0912

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

1362

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 3
Type: Research Article
ISSN: 2042-6747

Keywords

Article
Publication date: 30 July 2024

Babak Javadi and Mahla Yadegari

This paper aims to deal with intra and inter-cell layout problems in cellular manufacturing systems. The model is organized to minimize the total handling cost, i.e. intra and…

Abstract

Purpose

This paper aims to deal with intra and inter-cell layout problems in cellular manufacturing systems. The model is organized to minimize the total handling cost, i.e. intra and inter-cell handling costs in a continuous environment.

Design/methodology/approach

The research was conducted by developing a mixed integer mathematical model. Due to the complexity and NP-hard nature of the cellular manufacturing layout problem, which mostly originated from binary variables, a “graph-pair” representation is used for every machine set and cells each of which manipulates the relative locations of the machines and cells both in left-right and below-up direction. This approach results in a linear model as the binary variables are eliminated and the relative locations of the machines and cells are determined. Moreover, a genetic algorithm as an efficient meta-heuristic algorithm is embedded in the resulting linear programming model after graph-pair construction.

Findings

Various numerical examples in both small and large sizes are implemented to verify the efficiency of the linear programming embedded genetic algorithm.

Originality/value

Considering the machine and cell layout problem simultaneously within the shop floor under a static environment enabled managers to use this concept to develop the models with high efficiency.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 18 January 2024

Shiba Hessami, Hamed Davari-Ardakani, Youness Javid and Mariam Ameli

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to…

Abstract

Purpose

This study aims to deal with the multi-mode resource-constrained project scheduling problem (MRCPSP) with the ability to transport resources among multiple sites, aiming to minimize the total completion time and the total cost of the project simultaneously.

Design/methodology/approach

To deal with the problem under consideration, a bi-objective optimization model is developed. All activities are interconnected by finish-start precedence relations, and pre-emption is not allowed. Then, the ɛ-constraint optimization method is used to solve 24 different-sized instances, ranging from 5 to 120 activities, and report the makespan, total cost and CPU time. A set of Pareto-optimal solutions are determined for some instances, and sensitivity analyses are performed to find the impact of changing parameters on objective values.

Findings

Results highlight the importance of resource transportability assumption on project completion time and cost, providing useful insights for decision makers and practitioners.

Originality/value

A novel bi-objective optimization model is proposed to deal with the multi-site MRCPSP, considering both the cost and time of resource transportation between multiple sites. To the best of the authors’ knowledge, none of the studies in the project scheduling area has yet addressed this problem.

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 30 July 2024

Ardalan Sabamehr, Nima Amani and Ashutosh Bagchi

This paper introduces a novel multi-setup merging method and assesses its performance using simulated response data from a Finite Element (FE) model of a five-storey frame and…

Abstract

Purpose

This paper introduces a novel multi-setup merging method and assesses its performance using simulated response data from a Finite Element (FE) model of a five-storey frame and experimental data from a cantilever beam tested in a laboratory setting.

Design/methodology/approach

In the research conducted at the Central Building Research Institute (CBRI) in Roorkee, India, a cantilever beam was examined in a laboratory setting. The study successfully extracted the modal properties of the multi-storey building using the merging technique. Identified frequencies and mode shapes provide valuable insights into the building's dynamic behavior, which is essential for structural analysis and assessment. The sensor layout and data merging approach allowed for the capture of relevant vibration modes despite the limited number of sensors, demonstrating the effectiveness of the methodology.

Findings

The results show that reducing the number of sensors can impact the accuracy of the mode shapes. It is recommended to use a minimum of 8 sensor locations (every two floors) for the building under study to obtain reliable benchmark results for further evaluation, periodic monitoring, and damage identification.

Originality/value

The results demonstrate that the developed algorithm can improve the system identification process and streamline data handling. Furthermore, the proposed method is successfully applied to analyze the modal properties of a multi-storey building.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 January 2024

Marco Fabio Benaglia, Mei-Hui Chen, Shih-Hao Lu, Kune-Muh Tsai and Shih-Han Hung

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature…

Abstract

Purpose

This research investigates how to optimize storage location assignment to decrease the order picking time and the waiting time of orders in the staging area of low-temperature logistics centers, with the goal of reducing food loss caused by temperature abuse.

Design/methodology/approach

The authors applied ABC clustering to the products in a simulated database of historical orders modeled after the actual order pattern of a large cold logistics company; then, the authors mined the association rules and calculated the sales volume correlation indices of the ordered products. Finally, the authors generated three different simulated order databases to compare order picking time and waiting time of orders in the staging area under eight different storage location assignment strategies.

Findings

All the eight proposed storage location assignment strategies significantly improve the order picking time (by up to 8%) and the waiting time of orders in the staging area (by up to 22%) compared with random placement.

Research limitations/implications

The results of this research are based on a case study and simulated data, which implies that, if the best performing strategies are applied to different environments, the extent of the improvements may vary. Additionally, the authors only considered specific settings in terms of order picker routing, zoning and batching: other settings may lead to different results.

Practical implications

A storage location assignment strategy that adopts dispersion and takes into consideration ABC clustering and shipping frequency provides the best performance in minimizing order picker's travel distance, order picking time, and waiting time of orders in the staging area. Other strategies may be a better fit if the company's objectives differ.

Originality/value

Previous research on optimal storage location assignment rarely considered item association rules based on sales volume correlation. This study combines such rules with several storage planning strategies, ABC clustering, and two warehouse layouts; then, it evaluates their performance compared to the random placement, to find which one minimizes the order picking time and the order waiting time in the staging area, with a 30-min time limit to preserve the integrity of the cold chain. Order picking under these conditions was rarely studied before, because they may be irrelevant when dealing with temperature-insensitive items but become critical in cold warehouses to prevent temperature abuse.

Details

The International Journal of Logistics Management, vol. 35 no. 5
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 18 September 2024

Elham Yousefi, Alireza Ahmadian Fard Fini and Santhosh Loganathan

This study aims to develop a production-oriented approach for optimal mass-customisation of floor panel layouts in cross-laminated timber (CLT) buildings. The study enables…

Abstract

Purpose

This study aims to develop a production-oriented approach for optimal mass-customisation of floor panel layouts in cross-laminated timber (CLT) buildings. The study enables meeting building clients’ unique floor plan requirements at an optimal cost and simultaneously enhances manufacturers’ profit by minimising material and manufacturing process waste.

Design/methodology/approach

The present research uses a hybrid approach consisting of field data collection, mathematical modelling, development of a Genetic Algorithm (GA) and scenario analysis. Field data includes engineered timber production information, design data and building code requirements. The study adopts the Flexible Demand Assignment (FDA) technique to formulate a mathematical model for optimising the design of mass timber buildings and employs GA to identify optimal production solutions. Scenario analysis is performed to validate model outputs.

Findings

The proposed model successfully determines the load-bearing wall placement and building spans and specifications of floor panels that result in optimal production efficiency and the desired architectural layout. The results indicate that buildings made of a single category of thickness of panels but customised in various lengths to suit building layout are the most profitable scenario for CLT manufacturers and are a cost-effective option for clients.

Originality/value

The originality of the present study lies in its mathematical and model-driven approach towards implementing mass customisation in multi-storey buildings. The proposed model has been developed and validated based on a comprehensive set of real-world data and constraints.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 5 July 2024

Yuanwu Cai, Bo Chen and Chongyi Chang

This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track…

Abstract

Purpose

This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.

Design/methodology/approach

Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces. Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.

Findings

The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism, both tensile and compressive states exit on the surface of the web. When vertical force is applied, Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110 mm of the web. Under lateral force, high Mises stress and strain are observed near the radius of 670 mm on the inner and outer sides of the web. As the wheel-rail force application point shifts laterally toward the outer side, the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web. Under lateral force, the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point. Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces, the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force, while the inner radius of 1143 mm is suitable for measuring lateral force.

Originality/value

The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.

Details

Railway Sciences, vol. 3 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 217