Search results

11 – 20 of over 61000
Article
Publication date: 1 January 2014

Mohammad Mehdi Fateh and Maryam Baluchzadeh

Applying discrete linear optimal control to robot manipulators faces two challenging problems, namely nonlinearity and uncertainty. This paper aims to overcome nonlinearity and…

Abstract

Purpose

Applying discrete linear optimal control to robot manipulators faces two challenging problems, namely nonlinearity and uncertainty. This paper aims to overcome nonlinearity and uncertainty to design the discrete optimal control for electrically driven robot manipulators.

Design/methodology/approach

Two novel discrete optimal control approaches are presented. In the first approach, a control-oriented model is applied for the discrete linear quadratic control while modeling error is estimated and compensated by a robust time-delay controller. Instead of the torque control strategy, the voltage control strategy is used for obtaining an optimal control that is free from the manipulator dynamics. In the second approach, a discrete optimal controller is designed by using a particle swarm optimization algorithm.

Findings

The first controller can overcome uncertainties, guarantee stability and provide a good tracking performance by using an online optimal algorithm whereas the second controller is an off-line optimal algorithm. The first control approach is verified by stability analysis. A comparison through simulations on a three-link electrically driven robot manipulator shows superiority of the first approach over the second approach. Another comparison shows that the first approach is superior to a bounded torque control approach in the presence of uncertainties.

Originality/value

The originality of this paper is to present two novel optimal control approaches for tracking control of electrically driven robot manipulators with considering the actuator dynamics. The novelty is that the proposed control approaches are free from the robot's model by using the voltage control strategy. The first approach is a novel discrete linear quadratic control design supported by a time-delay uncertainty compensator. The second approach is an off-line optimal design by using the particle swarm optimization.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2006

Nesar Ahmad, Ariful Islam and Abdus Salam

The aim of this research paper is to generalize the previous works on the design of accelerated life tests (ALTs) for periodic inspection and Type I censoring and to promote the…

Abstract

Purpose

The aim of this research paper is to generalize the previous works on the design of accelerated life tests (ALTs) for periodic inspection and Type I censoring and to promote the use of an exponentiated Weibull (EW) distribution in accelerated life testing.

Design/methodology/approach

Statistically optimal ALT plans are suggested for items whose lifetime follows the EW distribution under periodic inspection and Type I censoring. It is assumed that the mean lifetime (scale parameter) is a log‐linear function of stress and that the shape parameters are independent of stress. Given shape parameters, design stress and high test stress, the test plan is optimized with respect to the low test stress and the proportion of test units are also allocated to this test stress. The asymptotic variance (AsVar) of the maximum likelihood estimator of log mean life at the design stress is used as an optimality criterion with equally spaced inspection times. A FORTRAN program was written to calculate the optimal plans. Procedures for planning of an ALT, including selection of sample size, have also been discussed. An illustration of the optimal ALT plans has been done through a numerical example.

Findings

Computational findings for various values of the shape parameters indicate that the AsVar of log mean life at the design stress is insensitive to the number of inspection times and to misspecifications of imputed failure probabilities at design and high test stresses. Computational findings also show that optimal designs of ALT previously obtained for exponential, Rayleigh, and Weibull distributions become special cases of the EW distribution. Thus, the EW distribution is a useful and widely applicable reliability model for optimal ALT plans.

Originality/value

The present investigation features the EW distribution of lifetimes of test items and it generalizes the previous works on accelerated life testing. Furthermore, the propose test plans can be applied to estimate the lifetime of highly reliable product or material, if a researcher designs a test under the assumption of this model.

Details

International Journal of Quality & Reliability Management, vol. 23 no. 8
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 12 October 2012

Changzhu Wei, Yi Shen, Xiaoxiao Ma, Jifeng Guo and Naigang Cui

The purpose of this paper is to analyze the frame of a missile formation cooperative control system, and present an optimal keeping controller of a missile formation in the…

Abstract

Purpose

The purpose of this paper is to analyze the frame of a missile formation cooperative control system, and present an optimal keeping controller of a missile formation in the cooperative engagement.

Design/methodology/approach

A missile relative motion model is established directly based on the kinematics relationships in the relative coordinated frame, following that is the detailed process of designing an optimal formation controller, which is analyzed through the small disturbance linearized method and transforming control variables method, respectively, these two methods both have themselves properties. The equations and control variables are intuitive during the linearized analysis, but errors brought by the linearized method are unavoidable, which will reduce the control precision. As for the transforming method, the control accuracy is greatly increased although the control form is a little complex, so in this paper the transforming control variable method is mainly researched to design an optimal formation controller. Considering the states of a leader as input perturbation variables, we design an optimal formation controller based on the linear quadric theory, which has quadric optimal performances of the missile flight states and control quantity. In order to obtain a higher accurate solution, the precise integration algorithm is introduced to solve the Riccati Equation that significantly affects the accuracy of an optimal control problem.

Findings

The relative motion model established directly in the relative coordinate frame has intuitive physical significance, and the optimal controller based on this relative motion model is capable of restraining the invariable or slowly varying perturbation brought by the velocity of a leader and the input perturbations caused by the maneuver of the leader, at the same time this optimal controller can implement formation reconfiguration and keeping to an expected states rapidly, steadily and exactly; the steady errors can be greatly decreased by analyzing the relative motion model through transforming control variables method compared to the small disturbance linearized operation.

Practical implications

The main frame of a missile formation cooperative engagement system can be found in this paper, which shows a clear structure and relations of each part of this complex system. The relations between each subsystem including the specific input and output variables can also be used to guide and restrict how to design each subsystem. The emphasis of this paper is on designing an optimal formation keeping controller which can overcome slowly varying or invariable perturbations and implement quadric optimal keeping control rapidly, stably and accurately.

Originality/value

This paper provides a new method to analyze the missile relative motion model. The proposed proportional and integral (PI) optimal controller based on this model, and utilizing the Precise Integration Algorithm to solve this optimal controller are also new thoughts for formation control problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 84 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 1992

SRINIVAS KODIYALAM, S. ADALI and I.S. SADEK

The optimal thickness distribution of a two‐span continuous beam is determined with the objectives of minimizing the maximum stress, maximizing the fundamental frequency and…

Abstract

The optimal thickness distribution of a two‐span continuous beam is determined with the objectives of minimizing the maximum stress, maximizing the fundamental frequency and frequency separation between adjacent frequencies. The self‐weight of the beam is included in the computations. The multiobjective design problem is solved by using the concept of Pareto optimality. The beam thickness is approximated by constant splines. The stress distribution and the frequencies are determined by the finite element method. The optimization of the beam is carried out by the feasible direction method and by employing a quadratic approximation of the thickness function. Numerical results are given for two‐objective design problems. Optimal trade‐off curves, thickness distributions and stress distributions of optimally designed beams are presented in graphical form. The effects of self‐weight and different design objectives on the thickness distribution are investigated.

Details

Engineering Computations, vol. 9 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 4 May 2020

José Pedro Soares Pinto Leite and Mark Voskuijl

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to…

8123

Abstract

Purpose

In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management.

Design/methodology/approach

To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory.

Findings

The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found.

Originality/value

The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 January 2017

Victor Bloch, Avital Bechar and Amir Degani

The purpose of this paper is to describe a methodology for characterization of the robot environment to help solve such problem as designing an optimal agricultural robot for a…

Abstract

Purpose

The purpose of this paper is to describe a methodology for characterization of the robot environment to help solve such problem as designing an optimal agricultural robot for a specific agricultural task.

Design/methodology/approach

Defining and characterizing a task is a crucial step in the optimization of a task-specific robot. It is especially difficult in the agricultural domain because of the complexity and unstructured nature of the environment. In this research, trees are modeled from orchards and are used as the robot working environment, the geometrical features of an agricultural task are investigated and a method for designing an optimal agricultural robot is developed. Using this method, a simplified characteristic environment, representing the actual environment, is developed and used.

Findings

Case studies showing that the optimal robot, which is designed based on the characteristic environment, is similar to the optimal robot, which is designed based on the actual environment (less than 4 per cent error), is presented, while the optimization run time is significantly shorter (up to 22 times) when using the characteristic environment.

Originality/value

This paper proposes a new concept for solving the robot task-based optimization by the analysis of the task environment and characterizing it by a simpler artificial task environment. The methodology decreases the time of the optimal robot design, allowing to take into account more details in an acceptable time.

Details

Industrial Robot: An International Journal, vol. 44 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1990

J. SIKORA

A new method of designing electromagnetic devices is presented in this paper. As a result of applying a very effective algorithm for non‐linear minimax optimization, a flexible…

Abstract

A new method of designing electromagnetic devices is presented in this paper. As a result of applying a very effective algorithm for non‐linear minimax optimization, a flexible method for Computer Aided Design (CAD) of electromagnetic devices has been obtained. The algorithm is based on successive linear approximation of the functions defining the problem. In each iteration step those functions are computed with the aid of the Finite Element Method (FEM). The resulting linear sub‐problems are solved in the minimax sense subject to the linear equality and inequality constraints. The application of the new method for the design of two different examples are presented. The first example is a classical case of shape designing with the aid of the independent nodes movement (INM) method. In the second example the applied equality constraints added to INM have reduced the problem to the optimal location. In both cases the method proved its flexibility and usefulness in CAD.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 9 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 April 2005

B.V. Babu, Pallavi G. Chakole and J.H. Syed Mubeen

This paper presents the application of Differential Evolution (DE), an evolutionary computation technique for the optimal design of gas transmission network. As a gas transmission…

Abstract

This paper presents the application of Differential Evolution (DE), an evolutionary computation technique for the optimal design of gas transmission network. As a gas transmission system includes source of gas, delivery sites with pipeline segments and compressors, the design of efficient and economical network involves lot of parameters. In addition, there are many equality and inequality constraints to be satisfied making the problem highly non‐linear. Hence an efficient strategy is needed in searching for the global optimum. In this study, DE has been successfully applied for optimal design of gas transmission network. The results obtained are compared with those of nonlinear programming technique and branch and bound algorithm. DE is able to find an optimal solution with a cost that is less than reported in the earlier literature. The proposed strategy takes less computational time to converge when compared to the existing techniques without compromising with the accuracy of the parameter estimates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 2021

Wang Jianhong

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole identification…

Abstract

Purpose

The purpose of this paper considers optimal input signal design for flutter model parameters identification, as input signal is the first step during the whole identification process. According to the constructed flutter stochastic model with observed noises, separable least squares identification and set membership identification are proposed to identify those unknown model parameters for statistical noise and unknown but bounded noise, respectively. The common trace operation with respect to the asymptotic variance matrix is minimized to solve the power spectral for the optimal input signal in the framework of statistical noise. Moreover, for the unknown bout bounded noise, the radius of information, corresponding to the established parameter uncertainty interval, is minimized to give the optimal input signal.

Design/methodology/approach

First, model identification for aircraft flutter is reviewed as one problem of parameter identification and this aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Second, for aircraft flutter statistical model with statistical noise, separable least squares identification is proposed to identify the unknown model parameters, then the optimal input signal is designed to satisfy one given performance function. Third, for aircraft flutter model with unknown but bounded noise, set membership identification is proposed to solve the parameter set for each unknown model parameter. Then, the optimal input signal is designed by applying the idea of the radius of information with unknown but bounded noise.

Findings

This aircraft flutter model corresponds to one stochastic model, whose input signal and output are corrupted by external noises. Then identification strategy and optimal input signal design are studied for aircraft flutter model parameter identification with statistical noise and unknown but bounded noise, respectively.

Originality/value

To the best knowledge of the authors, this problem of the model parameter identification for aircraft flutter was proposed by their previous work, and they proposed many identification strategies to identify these model parameters. This paper proposes two novel identification strategies and opens a new subject about optimal input signal design for statistical noise and unknown noise, respectively.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2007

Namwoo Kang, Junyoung Kim and Yongtae Park

To solve the trade‐offs between marketing and R&D domains and to minimize information loss in new product development (NPD), this study proposes an integrated design process as a…

1780

Abstract

Purpose

To solve the trade‐offs between marketing and R&D domains and to minimize information loss in new product development (NPD), this study proposes an integrated design process as a new solution to the interface system between the two domains.

Design/methodology/approach

House of Quality integrated with multivariate statistical analysis is used for determining important design features. These design features are used as parameters for conjoint analysis and Taguchi method, and then the results of analyses are compared. Sequential application of conjoint analysis and Taguchi method, depending on the differences in utilities and signal to noise ratios, is applied for the integrated design process. An automotive interior design is illustrated for the validation of the integrated design process.

Findings

The integrated design process determines a point of compromise between the optimums of conjoint analysis and Taguchi method. Sequential application of two methods ensures full utilization of both methods and no loss of information.

Research limitations/implications

More illustrations on NPD are needed to verify the proposed process.

Practical implications

The design process suggested in this study can be used for process innovation in six sigma approach and be integrated with value chain intelligently. This study proposes the strategic guideline of the integrated design process for enterprises.

Originality/value

The integrated design process suggests the solution for the trade‐offs between marketing domain that pursues the utility of product and R&D domain that emphasizes robustness of product quality. This integrated design process will give enterprises competitive advantages in NPD.

Details

Industrial Management & Data Systems, vol. 107 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

11 – 20 of over 61000