Search results

1 – 10 of over 13000
Article
Publication date: 10 June 2022

Hong-Sen Yan, Zhong-Tian Bi, Bo Zhou, Xiao-Qin Wan, Jiao-Jun Zhang and Guo-Biao Wang

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Abstract

Purpose

The present study is intended to develop an effective approach to the real-time modeling of general dynamic nonlinear systems based on the multidimensional Taylor network (MTN).

Design/methodology/approach

The authors present a detailed explanation for modeling the general discrete nonlinear dynamic system by the MTN. The weight coefficients of the network can be obtained by sampling data learning. Specifically, the least square (LS) method is adopted herein due to its desirable real-time performance and robustness.

Findings

Compared with the existing mainstream nonlinear time series analysis methods, the least square method-based multidimensional Taylor network (LSMTN) features its more desirable prediction accuracy and real-time performance. Model metric results confirm the satisfaction of modeling and identification for the generalized nonlinear system. In addition, the MTN is of simpler structure and lower computational complexity than neural networks.

Research limitations/implications

Once models of general nonlinear dynamical systems are formulated based on MTNs and their weight coefficients are identified using the data from the systems of ecosystems, society, organizations, businesses or human behavior, the forecasting, optimizing and controlling of the systems can be further studied by means of the MTN analytical models.

Practical implications

MTNs can be used as controllers, identifiers, filters, predictors, compensators and equation solvers (solving nonlinear differential equations or approximating nonlinear functions) of the systems of ecosystems, society, organizations, businesses or human behavior.

Social implications

The operating efficiency and benefits of social systems can be prominently enhanced, and their operating costs can be significantly reduced.

Originality/value

Nonlinear systems are typically impacted by a variety of factors, which makes it a challenge to build correct mathematical models for various tasks. As a result, existing modeling approaches necessitate a large number of limitations as preconditions, severely limiting their applicability. The proposed MTN methodology is believed to contribute much to the data-based modeling and identification of the general nonlinear dynamical system with no need for its prior knowledge.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 25 February 2022

Abdellah Ferdjali, Momir Stanković, Stojadin Manojlović, Rafal Madonski, Dimitrije Bujaković and Abderraouf Djenadbia

A laser seeker is an important element in missile guidance and control systems, responsible for target detection and tracking. Its control is, however, a challenging problem due…

Abstract

Purpose

A laser seeker is an important element in missile guidance and control systems, responsible for target detection and tracking. Its control is, however, a challenging problem due to complex dynamics and various acting disturbances. Hence, the purpose of this study is to propose a systematic design, tuning, analysis and performance verification of a nonlinear active disturbance rejection control (ADRC) algorithm for the specific case of the laser seeker system.

Design/methodology/approach

The proposed systematic approach of nonlinear ADRC application to the laser seeker system consists of the following steps. The complex laser seeker control problem is first expressed as a regulation problem. Then, a nonlinear extended state observer (ESO) with varying gains is used to improve the performance of a conventionally used linear ESO (LESO), which enables better control quality in both transient and steady-state periods. In the next step, a systematic observer tuning, based on a detailed analysis of the system disturbances, is proposed. The stability of the overall control system is then verified using a describing function method. Next, the implementation of the NESO-based ADRC solution is realized in a fixed-point format using MATLAB/Simulink and Xilinx System Generator. Finally, the considered laser seeker control system is implemented in discrete form and comprehensively tested through hardware-in-the-loop (HIL) co-simulation.

Findings

Through the conducted comparative study of LESO-based and NESO-based ADRC algorithms for the laser seeker system, the advantages of the proposed nonlinear scheme are shown. It is concluded that the NESO-based ADRC scheme for the laser seeker system (with appropriate parameters tuning methodology) provides better control performance in both transient and steady-state periods. The conducted multicriteria study validates the efficacy of the proposed systematic approach of applying nonlinear ADRC to laser seeker systems.

Practical implications

In practice, the obtained results imply that the laser seeker system, governed by the studied nonlinear version of the ADRC algorithm, could potentially detect and track targets faster and more accurately than the system based on the common linear ADRC algorithm. In addition, the article presents the step-by-step procedure for the design, field programmable gate array (FPGA) implementation and HIL-based co-simulation of the proposed nonlinear controller, which can be used by control practitioners as one of the last validation stages before experimental tests on a real guidance system.

Originality/value

The main contribution of this work is the systematic procedure of applying the ADRC scheme with NESO for the specific case of the laser seeker system. It includes its design, tuning, analysis and performance verification (with simulation and FPGA hardware). The novelty of the work is also the combination and practical realization of known theoretical elements (NESO structure, NESO parameter tuning, ADRC closed-loop stability analysis) in the specific case of the laser seeker system. The results of the conducted applied research increase the current state of the art related to robust control of laser seeker systems working in disturbed and uncertain conditions.

Article
Publication date: 22 August 2008

Ben Nasr Hichem and M'Sahli Faouzi

The paper aims to present a new concept based on a multi‐agent approach in the area of nonlinear model predictive control (MPC) for fast systems.

Abstract

Purpose

The paper aims to present a new concept based on a multi‐agent approach in the area of nonlinear model predictive control (MPC) for fast systems.

Design/methodology/approach

A contribution to decentralized implementation of MPC is made. The control of the nonlinear system subject to constraints is achieved via a set of actions taken from different agents. The actions are based on an analytical solution and a neural network is used to monitor the closed system using a supervisory loop concept.

Findings

The high online computational need to solve an optimal control actions in nonlinear MPC, which results in a non‐convex optimization, is compared with the new proposed concept. Simulation results show that this approach has very remarkable performances in time computing and target arrival.

Research limitations/implications

In practice, each MPC problem of the individual agent in multi‐agent MPC can run in parallel at the same time, instead of in serial, one agent after another. A parallel processor can be useful for real time implementation. However, it is estimated that how much time can be gained by performing the computations in parallel instead of in serial.

Practical implications

The proposed concept discussed in the paper has the potential to be applied to systems with rapid dynamics.

Originality/value

The multi‐agent MPC compares favorably with respect to a numerical optimization routine and also offers a solution for non‐convex optimization problems in single‐input single‐output systems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 May 2015

Gonzalo Garcia, Shahriar Keshmiri and Thomas Stastny

Nonlinear model predictive control (NMPC) is emerging as a way to control unmanned aircraft with flight control constraints and nonlinear and unsteady aerodynamics. However, these…

Abstract

Purpose

Nonlinear model predictive control (NMPC) is emerging as a way to control unmanned aircraft with flight control constraints and nonlinear and unsteady aerodynamics. However, these predictive controllers do not perform robustly in the presence of physics-based model mismatches and uncertainties. Unmodeled dynamics and external disturbances are unpredictable and unsteady, which can dramatically degrade predictive controllers’ performance. To address this limitation, the purpose of this paper is to propose a new systematic approach using frequency-dependent weighting matrices.

Design/methodology/approach

In this framework, frequency-dependent weighting matrices jointly minimize closed-loop sensitivity functions. This work presents the first practical implementation where the frequency content information of uncertainty and disturbances is used to provide a significant degree of robustness for a time-domain nonlinear predictive controller. The merit of the proposed method is successfully verified through the design, coding, and numerical implementation of a robust nonlinear model predictive controller.

Findings

The proposed controller commanded and controlled a large unmanned aerial system (UAS) with unsteady and nonlinear dynamics in the presence of environmental disturbances, measurement bias or noise, and model uncertainties; the proposed controller robustly performed disturbance rejection and accurate trajectory tracking. Stability, performance, and robustness are attained in the NMPC framework for a complex system.

Research limitations/implications

The theoretical results are supported by the numerical simulations that illustrate the success of the presented technique. It is expected to offer a feasible robust nonlinear control design technique for any type of systems, as long as computational power is available, allowing a much larger operational range while keeping a helpful level of robustness. Robust control design can be more easily expanded from the usual linear framework, allowing meaningful new experimentation with better control systems.

Originality/value

Such algorithms allows unstable and unsteady UASs to perform reliably in the presence of disturbances and modeling mismatches.

Details

International Journal of Intelligent Unmanned Systems, vol. 3 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 25 August 2022

Hangjun Zhang, Jinhui Fang, Jianhua Wei, Huan Yu and Qiang Zhang

This paper aims to present an adaptive sliding mode control (ASMC) for tunnel boring machine cutterhead telescopic system with uncertainties to achieve a high-precision trajectory…

Abstract

Purpose

This paper aims to present an adaptive sliding mode control (ASMC) for tunnel boring machine cutterhead telescopic system with uncertainties to achieve a high-precision trajectory in complex strata. This method could be applied to solve the problems caused by linear and nonlinear model uncertainties.

Design/methodology/approach

First, an integral-type sliding surface is defined to reduce the static tracking error. Second, a projection type adaptation law is designed to approximate the linear and nonlinear redefined parameters of the electrohydraulic system. Third, a nonlinear robust term with a continuous approximation function is presented for handling load force uncertainty and reducing sliding mode chattering. Moreover, Lyapunov theory is applied to guarantee the stability of the closed-loop system. Finally, the effectiveness of the proposed controller is proved by comparative experiments on a scaled test rig.

Findings

The linear and nonlinear model uncertainties lead to large variations in the dynamics of the mechanism and the tracking error. To achieve precise position tracking, an adaptation law was integrated into the sliding mode control which compensated for model uncertainties. Besides, the inherent sliding mode chattering was reduced by a continuous approximation function, while load force uncertainty was solved by a nonlinear robust feedback. Therefore, a novel ASMC for tunnel boring machine cutterhead telescopic system with uncertainties can improve its tracking precision and reduce the sliding mode chattering.

Originality/value

To the best of the authors’ knowledge, the ASMC is proposed for the first time to control the tunnel boring machine cutterhead telescopic system with uncertainties. The presented control is effective not only in control accuracy but also in parameter uncertainty.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 January 2018

Azadeh Ahifar, Abolfazl Ranjbar Noee and Zahra Rahmani

The purpose of this paper is to design a synergetic controller to precisely and quickly track reference signals in robot manipulators. Having smooth control signal this controller…

Abstract

Purpose

The purpose of this paper is to design a synergetic controller to precisely and quickly track reference signals in robot manipulators. Having smooth control signal this controller enables the nonlinear robot system to track desired references in presence of disturbances in a finite time.

Design/methodology/approach

A new synergetic manifold is introduced here, followed by adding a nonlinear exponential term to it have a precise tracking within a finite time of the desired references with disturbances. Previously the nonlinear term was inserted in the main synergetic equation which makes it complicated due to its hard mathematical approach. Using Lyapunov function, the stability of the system in the presence of disturbances is proved. The validity of the resulted system is confirmed by simulating it in Simulink.

Findings

Using a terminal synergetic controller with new manifold proposed in this work enables system’s state variables to track desired reference signal in the presence of disturbances from any initial condition with proper precision and rate. Simulation results show that compared to similar methods it provides a more proper speed and a finite time convergence with high precision and speed.

Originality/value

Providing fast and precise convergence, the proposed controller can be used in robot manipulator systems which need fast response and also have a precise performance such as in printing 3D objects and any industrial process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 August 2021

Nigar Ahmed and Mou Chen

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear

Abstract

Purpose

The aim of this research paper is to design a disturbance observer (DO)-based robust adaptive tracking control of uncertain nonlinear system subject to unknown nonlinear disturbance.

Design/methodology/approach

To achieve desired control objectives, i.e. nonlinear trajectory tracking and disturbance attenuation, firstly, a control scheme is designed based on the adaptive criteria integrated in sliding mode control (SMC). In the second step, the disturbance estimation criterion is designed followed by patching with the controller obtained in the first step. Following the control development, using the Lyapunov candidate function, the stability criterion is ensured by designing appropriate adaptive gains.

Findings

In this paper, a robust adaptive nonlinear tracking method is presented. The findings includes the design of adaptive gains for the control parameters involved in the robust SMC technique, i.e. adaptive criterion is designed for the switching gain as well as for the gain used in sliding mode surface. Furthermore, a disturbance estimation criterion is developed to attenuate nonlinear disturbances with variable frequency and magnitude. Finally, the disturbance estimation scheme is combined with the control technique to obtain DO-based control (DOBC) algorithm.

Practical implications

Sliding mode control is a powerful robust control method. And, combining it with the DO achieves the control objectives of plants subject to disturbances and uncertainties. However, usually the uncertainties and disturbances are unknown and time varying. Thus, during practical implementation, designing the standard SMC is a challenging task due to the constant gains involved in the control design. Hence, it is important to have a criterion which adapts to the varying dynamics of plants due to the uncertainties and disturbances for achieving practical implementation of the control system.

Originality/value

Sliding mode control has been widely used for achieving the desired control objectives and robustness in the close-loop nonlinear systems. Besides, the SMC technique has been combined with the DOs as well. However, mostly the ideal conditions were considered during these developments, which required the control gains to be designed simply by manual tuning appropriately. However, by considering the real-time dynamics, uncertainties and disturbances, the constant control gain criteria can fail. Furthermore, due to external and internal disturbances, the model plant can vary with time. Thus, it is important to design the adaptive criteria for the control gains in DOBC schemes.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 January 2022

Zhifang Wang, Jianguo Yu and Shangjing Lin

To solve the above problems and ensure the stability of the ad hoc network node topology in the process of wireless signal transmission, this paper aims to design a robust…

Abstract

Purpose

To solve the above problems and ensure the stability of the ad hoc network node topology in the process of wireless signal transmission, this paper aims to design a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system.

Design/methodology/approach

This paper designs a robust adaptive sliding film fault-tolerant controller under the nonlinear distortion of signal transmission in an amorphous flat air-to-ground wireless ad hoc network system.

Findings

The simulation results show that the amorphous flat wireless self-organizing network system has good nonlinear distortion fault-tolerant correction ability under the feedback control of the designed controller, and the system has the asymptotically stable convergence ability; the test results show: the node topology of the self-organizing network structural stability is significantly improved, which provides a foundation for the subsequent realization of long-distance transmission of ad hoc network nodes.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.

Originality/value

The controller can extract the fault information caused by nonlinear distortion in the wireless signal transmission process, and at the same time, its feedback matrix K can gradually converge the generated wireless signal error to zero, to realize the stable transmission of the wireless signal.

Article
Publication date: 6 March 2017

Chao Tao, Jing Wan and Jianliang Ai

The purpose of the paper is to design a robust control system for a generic hypersonic vehicle which includes dynamic nonlinear, open loop unstable and parametric uncertainties.

Abstract

Purpose

The purpose of the paper is to design a robust control system for a generic hypersonic vehicle which includes dynamic nonlinear, open loop unstable and parametric uncertainties.

Design/methodology/approach

For a complex longitudinal model of a generic hypersonic vehicle which includes dynamic nonlinear, open loop unstable and parametric uncertainties, a nonlinear dynamic inverse (NDI) approach combined with proportional differential (PD) control is used to design a strong robust control system to deal with the sensitivity to changes of atmosphere condition. In this way, a simple genetic algorithm is used to search a group of parameters of the control system to satisfy the specific performance indices. Then parametric uncertainties are considered to verify the robustness of the control system.

Findings

The PD hypersonic vehicle control system using NDI approach can satisfy the specific flight performance. And it has strong robustness under the parametric uncertainties.

Originality/value

The paper fulfills a complete process of the nonlinear control system design for a generic hypersonic vehicle. And, the simulation results show the efficiency and robustness of the control system.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 August 2010

Slim Frikha, Mohamed Djemel and Nabil Derbel

The purpose of this paper is to present an adaptive neuro‐sliding mode control scheme for uncertain nonlinear systems with Lyapunov approach.

Abstract

Purpose

The purpose of this paper is to present an adaptive neuro‐sliding mode control scheme for uncertain nonlinear systems with Lyapunov approach.

Design/methodology/approach

The paper focuses on neural network (NN) adaptive control for nonlinear systems in the presence of parametric uncertainties. The plant model structure is represented by a NNs system. The essential idea of the online parametric estimation of the plant model is based on a comparison of the measured state with the estimated one. The proposed adaptive neural controller takes advantages of both the sliding mode control and proportional integral (PI) control. The chattering phenomenon is attenuated and robust performances are ensured. Based on Lyapunov stability theorem, the proposed adaptive neural control system can guarantee the stability of the whole closed‐loop system and obtain good‐tracking performances. Adaptive laws are proposed to adjust the free parameters of the neural models.

Findings

Simulation results show that the adaptive neuro‐sliding mode control approach works satisfactorily for nonlinear systems in the presence of parametric uncertainties.

Originality/value

The proposed adaptive neuro‐sliding mode control approach is a mixture of classical neural controller with a supervisory controller. The PI controller is used to attenuate the chattering phenomena. Based on the Lyapunov stability theorem, it is rigorously proved that the stability of the whole closed‐loop system is ensured and the tracking performance is achieved.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of over 13000