Search results

1 – 10 of 40
Open Access
Article
Publication date: 2 August 2019

Mair Khan, T. Salahuddin, Muhammad Malik Yousaf, Farzana Khan and Arif Hussain

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of…

1425

Abstract

Purpose

The purpose of the current flow configurations is to bring to attention the thermophysical aspects of magnetohydrodynamics (MHD) Williamson nanofluid flow under the effects of Joule heating, nonlinear thermal radiation, variable thermal coefficient and activation energy past a rotating stretchable surface.

Design/methodology/approach

A mathematical model is examined to study the heat and mass transport analysis of steady MHD Williamson fluid flow past a rotating stretchable surface. Impact of activation energy with newly introduced variable diffusion coefficient at the mass equation is considered. The transport phenomenon is modeled by using highly nonlinear PDEs which are then reduced into dimensionless form by using similarity transformation. The resulting equations are then solved with the aid of fifth-order Fehlberg method.

Findings

The rotating fluid, heat and mass transport effects are analyzed for different values of parameters on velocity, energy and diffusion distributions. Parameters like the rotation parameter, Hartmann number and Weissenberg number control the flow field. In addition, the solar radiation, Joule heating, Prandtl number, thermal conductivity, concentration diffusion coefficient and activation energy control the temperature and concentration profiles inside the stretching surface. It can be analyzed that for higher values of thermal conductivity, Eckret number and solar radiation parameter the temperature profile increases, whereas opposite behavior is noticed for Prandtl number. Moreover, for increasing values of temperature difference parameter and thermal diffusion coefficient, the concentration profile shows reducing behavior.

Originality/value

This paper is useful for researchers working in mathematical and theoretical physics. Moreover, numerical results are very useful in industry and daily-use processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 20 April 2019

Dongming Wei and Samer Al-Ashhab

The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian coordinates with Eulerian description, for incompressible non-Newtonian fluids

Abstract

The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian coordinates with Eulerian description, for incompressible non-Newtonian fluids, is considered. The Ladyzhenskaya model, with a non-linear velocity dependent stress tensor is adopted, and leads to the governing equation of interest. The reduction is based on a self-similar transformation as demonstrated in existing literature, for two spatial variables and one time variable, resulting in an ODE defined on a semi-infinite domain. In our search for classical solutions, existence and uniqueness will be determined depending on the signs of two parameters with physical interpretation in the equation. Illustrations are included to highlight some of the main results.

Details

Arab Journal of Mathematical Sciences, vol. 26 no. 1/2
Type: Research Article
ISSN: 1319-5166

Keywords

Content available
Article
Publication date: 28 March 2022

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an…

Abstract

Purpose

The purpose of this study is to analyze the nonhomogeneous model on the mixed convection of Al2O3–Fe3O4 Bingham plastic hybrid nanofluid in a ventilated enclosure subject to an externally imposed uniform magnetic field. Entropy generation and the pressure drop are determined to analyze the performance of the heat transfer. The significance of Joule heating arising due to the applied magnetic field on the heat transfer of the yield stress fluid is described.

Design/methodology/approach

The ventilation in the enclosure of heated walls is created by an opening on one vertical wall through which cold fluid is injected and another opening on the opposite vertical wall through which fluid can flow out.

Findings

This study finds that the inclusion of Fe3O4 nanoparticles with the Al2O3-viscoplastic nanofluid augments the heat transfer. This rate of enhancement in heat transfer is higher than the rate by which the entropy generation is increased as well as the enhancement in the pressure drop. The yield stress has an adverse effect on the heat transfer; however, it favors thermal mixing. The magnetic field, which is acting opposite to the direction of the inlet jet, manifests heat transfer of the viscoplastic hybrid nanofluid. The horizontal jet of cold fluid produces the optimal heat transfer.

Originality/value

The objective of this study is to analyze the impact of the inclined cold jet of viscoplastic electrically conducting hybrid nanofluid on heat transfer from the enclosure in the presence of a uniform magnetic field. The combined effect of hybrid nanoparticles and a magnetic field to enhance heat transfer of a viscoplastic fluid in a ventilated enclosure has not been addressed before.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 23 June 2023

Ferdinand Schmid, Constantin Paschold, Thomas Lohner and Karsten Stahl

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a…

Abstract

Purpose

Internal gearings are commonly used in transmissions due to their advantages like high-power density. To ensure high efficiency, load-carrying capacity and good noise behavior, a profound knowledge of the local gear mesh is essential. The tooth contact of internal gears relates to a convex and concave surface that form a conformal contact. This is in contrast to external gears, where two convex surfaces form a contraformal contact. This paper aims at a better understanding of conformal contacts under elastohydrodynamic lubrication (EHL) to improve the design of internal gearings.

Design/methodology/approach

An existing numerical EHL model is used for studying the characteristic properties of a hard conformal EHL line contact. A hard contraformal EHL line contact is studied as reference. Non-Newtonian fluid behavior and thermal effects are considered. By taking into account the local contact conformity and kinematics, the effects and relevance of the curvature of the lubricant gap and micro-slip are analyzed. In a parameter study, scale effects of the contact radii on film thickness, temperature rise and friction are examined.

Findings

The curvature of the lubricant gap and effects of micro-slip are small in hard conformal EHL line contacts. For high micro-slip, it can be neglected. Hence, the modeling of conformal contacts using an equivalent geometry of the contact problem is reasonable. The parameter study shows beneficial tribological aspects of the conformal contact compared to the contraformal contact. Higher film thickness and lower fluid coefficient of friction are observed for conformal contacts, which can be attributed to lower pressures for the case of the same external normal force, or to a higher contact temperature rise for the case of equivalent contact pressure.

Originality/value

Despite its widespread existence, the local geometry and kinematics in hard conformal EHL line contacts like in internal gearings have been rarely studied. The findings help for a better understanding of local contact characteristics and its relevance. The quantified scale effects help to improve the efficiency and load-carrying capacity of machine elements with hard conformal EHL contacts, like internal gearings.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2022-0366/

Details

Industrial Lubrication and Tribology, vol. 75 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

927

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 1 June 2021

Ondřej Bublík, Libor Lobovský, Václav Heidler, Tomáš Mandys and Jan Vimmr

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which…

Abstract

Purpose

The paper targets on providing new experimental data for validation of the well-established mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to problems of casting processes in complex mould cavities.

Design/methodology/approach

An experimental campaign aiming at the free-surface flow within a system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.

Findings

The benchmark tests prove the ability of the implemented algorithm to provide a reliable solution when the surface tension effects become dominant. The convergence of the implemented method is assessed. The two new experimentally studied problems are resolved well by simulations using a coarse computational grid.

Originality/value

A detailed set of original experimental data for validation of computational schemes for simulations of free-surface gravity-driven flow within a system of narrow channels is presented.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2496

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 8 November 2023

Armando Di Meglio, Nicola Massarotti, Samuel Rolland and Perumal Nithiarasu

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical…

Abstract

Purpose

This study aims to analyse the non-linear losses of a porous media (stack) composed by parallel plates and inserted in a resonator tube in oscillatory flows by proposing numerical correlations between pressure gradient and velocity.

Design/methodology/approach

The numerical correlations origin from computational fluid dynamics simulations, conducted at the microscopic scale, in which three fluid channels representing the porous media are taken into account. More specifically, for a specific frequency and stack porosity, the oscillating pressure input is varied, and the velocity and the pressure-drop are post-processed in the frequency domain (Fast Fourier Transform analysis).

Findings

It emerges that the viscous component of pressure drop follows a quadratic trend with respect to velocity inside the stack, while the inertial component is linear also at high-velocity regimes. Furthermore, the non-linear coefficient b of the correlation ax + bx2 (related to the Forchheimer coefficient) is discovered to be dependent on frequency. The largest value of the b is found at low frequencies as the fluid particle displacement is comparable to the stack length. Furthermore, the lower the porosity the higher the Forchheimer term because the velocity gradients at the stack geometrical discontinuities are more pronounced.

Originality/value

The main novelty of this work is that, for the first time, non-linear losses of a parallel plate stack are investigated from a macroscopic point of view and summarised into a non-linear correlation, similar to the steady-state and well-known Darcy–Forchheimer law. The main difference is that it considers the frequency dependence of both Darcy and Forchheimer terms. The results can be used to enhance the analysis and design of thermoacoustic devices, which use the kind of stacks studied in the present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Article
Publication date: 10 August 2021

R. Ellahi

230

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Access

Only content I have access to

Year

Content type

1 – 10 of 40