
Experimental validation of
numerical simulations of

free-surface flow within casting
mould cavities

Ond�rej Bubl�ık, Libor Lobovsk�y, V�aclav Heidler, Tom�a�s Mandys and
Jan Vimmr

Department of Mechanics, NTIS - New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Republic

Abstract

Purpose – The paper targets on providing new experimental data for validation of the well-established
mathematical models within the framework of the lattice Boltzmann method (LBM), which are applied to
problems of casting processes in complex mould cavities.
Design/methodology/approach – An experimental campaign aiming at the free-surface flow within a
system of narrow channels is designed and executed under well-controlled laboratory conditions. An in-house
lattice Boltzmann solver is implemented. Its algorithm is described in detail and its performance is tested
thoroughly using both the newly recorded experimental data and well-known analytical benchmark tests.
Findings – The benchmark tests prove the ability of the implemented algorithm to provide a reliable solution
when the surface tension effects become dominant. The convergence of the implemented method is assessed.
The two new experimentally studied problems are resolved well by simulations using a coarse
computational grid.
Originality/value – A detailed set of original experimental data for validation of computational schemes for
simulations of free-surface gravity-driven flow within a system of narrow channels is presented.
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1. Introduction
Both experimental methods and computational simulations are used in the pre-production
stage of many industrial applications, which deal with free-surface flow problems, e.g. liquid
transport, sloshing, mixing of fluids, spray formation, etc. This study is a part of a project on
material casting and rapid prototyping of large thin structures of complex three-dimensional
geometries. In order to computationally resolve the flowwithin a thin casting mould cavity, a
fine computational grid with a large number of grid elements is often required. Thus, the
numerical simulation becomes expensive in terms of computational time and memory
demands.

Aiming at minimisation of the computational time costs, the lattice Boltzmann method
(LBM) is preferred within this study, as it is well suited for massive parallelisation on various
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architectures while its algorithm is relatively simple and efficient, K€orner et al. (2005), Sano
et al. (2008), Schornbaum and R€ude (2016), Calore et al. (2016). The LBM utilises a mesoscopic
approach to fluid flow modelling as it models the macroscopic variables (e.g. pressure,
velocity) by evaluating interactions of virtual fluid particles (expressed by means of particle
distribution function), Higuera et al. (1989), Benzi et al. (1992). In the macroscopic limit, the
LBM equations yield the Navier–Stokes equations, Chen and Doolen (1998), Wolf-
Gladrow (2005).

In order to model the incompressible fluid flow, the LBM method does not require a
solution of the Poisson’s equation. This decreases its computational demands. Although two-
phase flow LBM models of the casting processes exist, Szucki et al. (2017), Kharmiani and
Passandideh-Fard (2018), a single phase model with free-surface boundary, Ginzburg and
Steiner (2003), Zhang et al. (2019), is considered within this work in order to keep the
computational simplicity and cost efficiency.

Similarly to other Eulerian grid-based computational methods, the LBM requires an
algorithm for free-surface tracking in order to resolve the free-surface flow. This may be
based on the marker-and-cell method, Harlow and Welch (1965), McKee et al. (2008), or the
volume of fluid (VOF) method, Hirt and Nichols (1981), Torrey et al. (1987). Due to the
mesoscopic description of continuum, the LBM includes the mass transfer calculation, which
can be well utilised within the VOF scheme without a need of solving another equation,
Th€urey (2007), Janßen et al. (2013).

The in-house-implemented LBM solver also focuses on the surface tension and wetting
effects at the liquid–solid interface, Bogner et al. (2016). Details on the applied algorithm are
described hereafter.

Several benchmark tests with a well-known analytical solution are employed in order to
assess the performance of the implemented algorithm. The key part of the paper provides a
newly designed set of experiments, which target on free-surface flow propagation within a
casting mould. The experiments are analogue to gravity casting of liquified material into a
rigid mould with absence of thermodynamic or chemical effects, DeGarmo et al. (2003), Cleary
et al. (2014). In order to enhance the repeatibility of the tests and to avoid extensive statistical
analysis, the experiments target on laminar flow of Newtonian fluids. In addition, physical
properties of the applied fluid samples (viscosity, surface tension and density) are identified
during each experimental run.

While some published casting flow benchmarks address flow within large three-
dimensional moulds of considerable bulk, e.g. Hirt and Harper (1988), or within large planar
moulds, e.g. Sirrell et al. (1996), the presented experiments focus on propagation of casting
flow in long narrow channels. Prediction of such flow is essential for applications involving
complex three-dimensional channel systems, e.g. multiple-gate runner designs or complex
mould structures as in Mun et al. (2015). An attention is paid to channels which length is
excessively large in comparison to their cross section as well as to channels which cross
section varies along the channel length.

Since the experiments are carried out under well-controlled laboratory conditions, it is
aimed at providing a complete set of original experimental data (including rheological
measurements) for assessment of performance and accuracy of numerical algorithms for
casting flow simulations. The presented experimental results are available in an online
repository “https://www.kme.zcu.cz/hydrolab/gravitycasting-newtonianfluid”.

2. Lattice Boltzmann method
The LBM evolved from lattice gas cellular automata (LGCA) of late 1980s, Frisch et al. (1986).
First, the Boltzmann equation was used to calculate viscosity and transport coefficients
within the LGCA frame, Wolfram (1986), Frisch et al. (1987). Consequently, the LBM was
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founded as a stand-alone computational scheme that uses continuous distribution functions
rather than Boolean fields of LGCA,McNamara and Zanetti (1988). As a result, the LBM lacks
the statistical noise of the LGCA method. The original LBM scheme was simplified by
introducing the linearised collision operator, Higuera and Jim�enez (1989), and further by
application of the single time relaxation, Koelman (1991), Chen et al. (1992), which is based on
Bhatnagar–Gross–Krook approximation, Bhatnagar et al. (1954). Stability of the method was
further improved by the multiple relaxation time (MRT) scheme, d’Humi�eres et al. (2002). An
extensive review on the LBM and its substantial development over the last three decades can
be found, e.g. in Wolf-Gladrow (2005), Perumal and Dass (2015). Stability of the method is
addressed, e.g. in Sterling and Chen (1996), Worthing et al. (1997).

2.1 Discretisation
The LBM describes the continuum dynamics by simulating an interaction of virtual particles
within an equidistant lattice grid, Higuera et al. (1989), Chen et al. (1992). These virtual
particles statistically represent a swarm of real material particles in the phase space.

In the phase space, evolution of an arbitrary distribution function f ¼ f x;u; tð Þ in time t
can be described by the Boltzmann equation

vf

vt
þ u$

vf

vx
¼ Ω fð Þ (1)

where x ¼ x1; x2; x3½ �T is the position vector and u ¼ ½u1; u2; u3�T is the velocity vector.
Assuming that the distribution function f 5 f(x, u, t) represents the statistical density of
particles with a given velocity u at a given point x in space, the term Ω(f) on the right hand
side of equation (1) represents the collisions between the particles.

In order to discretise equation (1), the computational domain is covered by an equidistant
grid of points xi and a finite set of microscopic velocity direction vectors eα is introduced. The
velocity vectors eα are chosen such that the convective scalingΔx5 eαΔt is satisfied for all α.
The D3Q19 microscopic velocity model is adopted within this study, i.e. the velocity vectors
eα are defined in 19 directions within a three-dimensional lattice grid, see Figure 1 (left).

First, equation (1) is discretised in the velocity space, which yields a system of equations
for all velocity vectors eα.

vfα

vt
þ eα$

vfα

vx
¼ ΩðfαÞ (2)

Figure 1.
Lattice Boltzmann
method D3Q19 velocity
model (left), LBM grid
at liquid-gas
interface (right)
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where fα is a function of the spatial variable x and time t only, i.e. fα5 fα(x, t). In the second
step, equation (2) is discretised in space and time as

fαðx i þ eαΔt; t þ ΔtÞ ¼ fαðx i; tÞ �M −1SðτÞM ðfα � f
eq
α Þ (3)

where the collision operator Ω(fα) on the right hand side is approximated by multiple
relaxation time operator (MRT), d’Humi�eres et al. (2002). The transformation matrix M
represents a linear mapping between the discrete velocity space f and the discrete moment
spacem ¼ ½m0;m1;m2; . . . ;m18�T. The collision matrix S is a diagonal matrix of relaxation
rates, which are either constant or depend on the relaxation time τ. The structure of the
matrices M, S and m and the applied D3Q19 microscopic velocity model are described in
detail in d’Humi�eres et al. (2002).

The MRT collision operator improves the stability of the method for the relaxation time τ
→ 0.5þ and for large values of τ > 1. The extreme values of the relaxation time τ may be
problematic when a single relaxation time, Bhatnagar et al. (1954), or a dual relaxation time,
Ginzburg et al. (2008), collision operator is applied.

The function f eqα represents an equilibrium function, which is derived from the Maxwell
distribution for the given velocity model, Succi (2001). In the case of fluid dynamics, the
equilibrium function has the form

f eqα ðϱ;uÞ ¼ wαϱ 1þ 3ðeα$uÞ þ 9

2
ðeα$uÞ2 � 3

2
ðu$uÞ

� �
(4)

where wα are the velocity vector weights, which values are given according to the applied
microscopic velocity model, Succi (2001), d’Humi�eres et al. (2002), and ϱ is the density. Using
the Chapman–Enskog expansion, the incompressible Navier–Stokes equations can be
recovered, Chen et al. (1992).

For the calculation of the new time level according to the LBM scheme (3), it is
advantageous to split the calculation into the collision and streaming steps. In the collision
step, values of the post-collision distribution functions f cα are computed as follows:

f
c
αðx i; tÞ ¼ fαðx i; tÞ �M −1SðτÞM ðfαðx; tÞ � f

eq
α Þ: (5)

In the propagation step, the precomputed post-collision distribution functions f cα are
propagated into the neighbouring cells in the directions of vectors eα

fαðx i þ eαΔt; t þ ΔtÞ ¼ f cαðx i; tÞ: (6)

The collision step as well as the propagation step are evaluated at the given point xi
independently of its neighbours, therefore both of these steps are ideal for parallel processing.

The external body force can be introduced into the collision step as follows:

f cαðx i; tÞ ¼ fαðx i; tÞ �M −1SðτÞM ðfαðx i; tÞ � f eqα Þ þ f gαðx i; tÞ (7)

where f gαðx i; tÞ ¼ 3wαϱ ðeα$gÞ and g is the body force acceleration.
In order to enforce the no-slip boundary conditions at rigid wall boundaries, the bounce

back scheme of Ladd (1994) is utilised.

2.2 Free-surface modelling
An interface between two immiscible fluids can be treated by a multi-phase flow model,
Gunstensen et al. (1991), Swift et al. (1996), Sbragaglia et al. (2007), or in casewhen a ratio between
fluid densities is large (e.g. between liquid and gas), the influence of the low density fluidmay be
neglected and a free-surface flowmodel applied Ginzburg and Steiner (2003). Although there are
multi-phase flow algorithms capable of resolving high density ratio interfaces, e.g. Bao and
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Schaefer (2013), significant unphysical fluctuations, so called spurious currents Connington and
Lee (2012), may occur at liquid–gas interfaces (e.g. density ratio 1000:1). These currents may
deteriorate the resulting velocity field and cause instability of the calculation.

In order to keep the LBM algorithm simple and computational demands low, the free-
surface flow algorithm is employed below to track the liquid–gas interface. The implemented
LBM free-surface flow model is based on the VOF approach, Th€urey (2007), while the free-
surface is tracked directly using the distribution functions fα (which correspond to the mass
transfer in the direction of the microscopic velocity vectors eα).

Three types of computational grid cells are distinguished – liquid, gas and interface cells, see
Figure 1 (right). The liquid cell is fully filled with liquid and the standard LBM algorithm apply.
The gas cell is void and discarded from calculations. The interface cell is partially filled with the
liquid, and the computational algorithm is modified. In order to track the free surface, the mass
functionm and the fluid fraction χ5m/ϱ are introduced. The value of function χ is equal to 0 for
gas, 1 for liquid and χ ∈ (0, 1) for the liquid–gas interface. In order to capture themovement of the
free surface, the mass flux between the interface cell and its neighbouring cells is computed as

Δmαðx; t þ ΔtÞ ¼ ðfαðx þ eαΔt; tÞ � fαðx; tÞÞ χðx þ eαΔt; tÞ þ χðx; tÞ
2

(8)

where α denotes the opposite direction to α. The total mass change at the given cell is

mðx; t þ ΔtÞ ¼ mðx; tÞ þ
Xnα
α¼0

Δmαðx; t þ ΔtÞ: (9)

where nα 5 18 for the D3Q19 model.
When the total mass change is computed, the collision and propagation steps are

performed and the macroscopic variables are evaluated. During the mass change, the
interface cells can be filled up or emptied and the cell type has to be changed according to the
following prescription:

mðx; t þ ΔtÞ≥ ϱðx; t þ ΔtÞ þ e → liquid cell;
mðx; t þ ΔtÞ≤ � e → gas cell;

(10)

where e is a suitable small constant, which helps to prevent spurious oscillations between the
cell types. Its value needs to be tuned for each specific case. Based on the numerical testing,
the value of e 5 0.05 has been determined for all applications presented below.

When the interface cell changes its state and it gets filled up (emptied respectively), the
new fluid cell (the new gas cell respectively) gets right next to at least one gas cell (fluid cell
respectively). The gas cells which are adjacent to the filled up cells are changed to interface
cells. The same applies to the fluid cells adjacent to the emptied cells. In the end of the step,
there are no fluid and gas cells adjacent to each other.

To preserve the local and the global mass conservation during the cell conversion, the
excessive or missing mass of liquid within the interface cell

merrðx; t þ ΔtÞ ¼ mðx; t þ ΔtÞ � 1 for transformation to liquid;
mðx; t þ ΔtÞ for transformation to gas;

�
(11)

must be redistributed among the neighbouring interface cells xb so that

mðxb; t þ ΔtÞ ¼ mðxb; t þ ΔtÞ þmerrðx; t þ ΔtÞ
Nb

(12)

where Nb is a number of the neighbouring interface cells.

EC
38,10

4028



The unknown distribution functions fαðx; t þ ΔtÞcoming from the gas cell to the interface
cell can be reconstructed using the equilibrium function f eqα ðϱe;uÞ as follows:

fαðx; t þ ΔtÞ ¼ f
eq
α ðϱe;uÞ þ f

eq

α ðϱe;uÞ � fαðx; tÞ (13)

where u is the interface velocity, and the density ϱe depends on the external pressure pe and
on the Laplace pressure caused by the surface tension, i.e. ϱe 5 3(pe þ 2κσ) where σ is the
surface tension, and κ denotes the free-surface curvature.

2.2.1 Normals and curvature computation. For computation of normal vectors and
curvature of the free surface (the liquid–gas interface), an approximation of the spatial
derivatives needs to be introduced, Bogner et al. (2016). When an arbitrary function w is
defined on the grid of cells, then

∇wðxÞ ¼ 1Pnα
α¼0wα

Xnα
α¼0

wðx þ eαÞeα: (14)

When the value of function w in the direction eα would have to be evaluated outside the
computational domain, the following linear interpolation is applied:

woutside
α ¼ 2wðxÞ � wðx þ eαÞ: (15)

Formula (14) can be used to calculate the gradient of the volume fraction χ. The resulting
vector∇χ is parallel to the normal vector at the liquid–gas interface. Thus, the normal vector
is computed by normalising the vector ∇χ to unit length.

n ¼ ∇χ
j ∇χ j: (16)

A value of the normal vector n at an interface cell adjacent to the solid wall is corrected
according to the contact angle θ at the liquid–gas–solid interface. The corrected normal
vector is computed using the following relation:

ncorrect ¼ nw cosðθÞ þ tw sinðθÞ (17)

where nw is the normal vector of the solid wall. The tangent vector tw of the wall is defined as

tw ¼ n � nw n$nwð Þ: (18)

In order to precisely resolve the liquid–gas–solid interface, the dynamic contact angle (which
reflects the motion of the interface along the solid surface) should be considered, Yokoi et al.
(2009). However, for simplicity the static contact angle θ (which is a constant determined for
non-moving interface) is employed.

The normal vector n is used to compute the free-surface curvature κ as follows:

κ ¼ ∇$n (19)

where the divergence of the normal vector field is calculated similarly to (14). In the vicinity of
the computational domain boundary, the normal vectorn is corrected in the sense of equation
(15). The free-surface curvature is calculated at the interface cells only. However, in order to
calculate the curvature, the normal vectors must be defined at all cells in the interface cell
neighbourhood.

In order to minimise the magnitude of spurious fluctuations resulting from errors in the
finite difference approximation of the divergence of the normal vector field, the gradient of the
volume fraction respectively, the normal vectors are evaluated based on the smoothed
volume fractions bχ which are calculated as
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bχ ¼ 1Pnα
α¼0wα

Xnα
α¼0

wαχðx þ eαÞ: (20)

when the value of χ in the direction eα is outside the domain, and the linear interpolation (15) is
utilised. In order to further smooth the volume fraction bχ, the calculation of (20) can be
repeated.

2.3 Units conversion
The LBM scheme uses different length and time scales than physical dimensions. For the
correct setting of computational parameters, e.g. the relaxation time, and for obtaining
physical velocity and pressure field, the unit conversion is necessary. Let index LB denote the
variable in lattice Boltzmann units and index phys address the variable in physical units. The
unit conversion of arbitrary variable f from LBM units to physical units is defined using the
converter Cf so that

fphys ¼ CffLB: (21)

In total, two elementary converters, the space converter CH and the velocity converter CU, are
defined. If H is an arbitrary physical characteristic dimension of the computational domain
and n is the number of corresponding lattice cells related toH, then the space converter can be
defined as

CH ¼ H

n
: (22)

Similarly, when umaxphys is the expectedmaximal value of the physical velocity and umaxLB is the
corresponding maximal velocity in LBM units, the velocity converter is defined as

CU ¼ umaxphys

umaxLB

: (23)

For stability reasons, the value of the maximal velocity in LBM units is set to umaxLB ¼ 0:1. In
addition, the density converter can be considered in the following form:

Cϱ ¼
ϱphys

ϱLB

: (24)

Since the density in LBM units ϱLB 5 1, the density converter Cϱ is equal to the physical
density ϱphys. Converters of other physical variables can be derived using the elementary
converters CH and CU.

CT ¼ CH

CU

; CP ¼ 1

3
C

2
U ; Cν ¼ C

2
H

CT

; CG ¼ CH

C
2
T

; CST ¼ C
3
H

C
2
T

(25)

where CT is the time converter, CP is the pressure converter, Cν is the kinematic viscosity
converter, CG is the gravity acceleration converter and CST is the surface tension converter.

The relaxation time τ in LBM simulations is related to the physical kinematic viscosity
νphys 5 CννLB by the relation

τ ¼ 1

2
þ 3νLB: (26)

The physical value of the time step can be expressed as Δtphys 5 CTΔtLB. The value of
ΔtLB 5 1 is a common choice.
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Using the distributions functions fα, the macroscopic flow quantities in LBM units could
be expressed as

ϱLB ¼
Xnα
α¼0

fα; ϱLBuLB ¼
Xnα
α¼0

fαeα; pLB ¼ 1

3
ϱLB: (27)

2.3.1 Algorithm. The LBM scheme with the free-surface model includes several
computational steps. To produce efficient and valid LBM code, the following sequence of
computational steps is applied:

(1) Compute the mass exchange between cells and find filled up/emptied cells (8).

(2) Compute the smoothed function bχ according to formula (20).

(3) Compute the normal vectors and set the wall normals according (16) and (17).

(4) Compute the curvature according to equation (19).

(5) Perform the propagation step (6).

(6) Compute the macroscopic variables (27) and perform the collision step (5).

(7) Rewrite a flag for filled/emptied cells and mark new interface cells (10).

(8) Redistribute mass from the cell conversion, see equation (12).

3. Benchmarks with theoretical solution
The implemented LBM code is first tested using four benchmarks, which address its
capability to resolve viscous fluid flow and surface tension effects.

3.1 Poiseuille flow
The Poiseuille flow benchmark focuses on a laminar viscous flow in a fully flooded channel
between two parallel infinite plates, Sutera and Skalak (1993). The plates are parallel with the
xy plane, and the flow is driven in x direction by a body force g, Figure 2 (left). An
incompressible viscous fluid with the kinematic viscosity ν and density ϱ is considered. The
fluid velocity in x direction can be determined analytically as

uðzÞ ¼ ϱg

2ν
zðh� zÞ (28)

where h is the channel breadth. The velocity u is a function of z coordinate only, and the

maximal velocity umax ¼ ϱgh2

8ν is obtained in the centre of the channel, i.e. for z ¼ h
2
.

In order to compare the analytical solution with the LBM results, the LBM simulation is
performed on a cubic computational domain of h5 0.1m, while periodic boundary conditions
are applied in x and y direction. The numerical results are computed for the flow driven by the
body force g5 1 m s�2, the fluid density ϱ5 1 kg m�3 and the visocity ν5 0.001 m2 s�1. The

theoretically predicted Reynolds number Re ¼ umaxh
ν is equal to 125. The computed velocity

profile for 40 grid cells across the channel breadth is provided in Figure 2 (right).
In order to assess the accuracy of the LBM solution for various number of lattice cells

across the channel breadth n, the relative error is evaluated as

errn ¼ jumaxLB � umaxj
umax

(29)
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where umaxLB is themaximal velocity computed by the LBMscheme. As displayed inTable 1, a
reasonable accuracy is achieved already for a coarse lattice grid. With only five lattice cells
across the channel breadth, the relative error is about 4%. The second-order convergence of
the LBM results to the analytical solution of the Poiseuille flow is confirmed for large values of
n, Figure 3.

3.2 Advection
While the Poiseuille flow test does not involve free-surface interfaces, the second benchmark
targets on convergence of the LBM free-surface flow algorithm. A one-dimensional advection
of a bulk of fluid is explored below. The problem is solved on a three-dimensional
computational domain with absence of rigid boundaries and surface tension effects.

The cuboidal computational domain of dimensions H 3 H 3 2H, where H 5 0.01 m, is
employed. Periodic boundary conditions are applied in x and y direction. Initially, a part of the
computational domain (3/16 of its volume) is filled with liquid of density ϱ5 1000 kgm�3 and
kinematic viscosity ν 5 10–4 m2 s�1, while the rest of the domain is void, Figure 4 (left).

The initial velocity u5 0.1 m s�1 is imposed on a square block of fluid in z direction. Since
no body force field (such as gravity) is considered, the analytic solution for displacement of
the bulk of fluid at time t5 0.1 s is L5 0.01m, Figure 4 (right). The LBM solution is computed
for several lattice grids with different spatial resolution expressed bymeans of the number of
lattice cells n across the channel breadth H.

The results presented in Table 2 indicate that the solution of the advection problem is first-
order convergent. This is due to employment of the free-surface flowmodel, which utilises the
first-order accurate discretisation of the VOF scheme, equation (13).

3.3 Laplace pressure
The Laplace pressure denotes the difference in pressure across a curved interface between
static fluids (e.g. water droplet and air) caused by the surface tension, Butt et al. (2003).
The Laplace pressure may be predicted theoretically by using the Young–Laplace equation

Number of cells Parameter τ LBM umaxLB ½ms−1� Rel. error errn [%] Order of convergence log2ð errnerr2n
Þ

5 0.515 1.1992 4.06 –
10 0.53 1.2247 2.03 1.00
20 0.56 1.2436 0.51 1.99
40 0.62 1.2484 0.132 1.95
80 0.74 1.2495 0.034 1.96

Figure 2.
Poiseuille flow: channel
geometry and contour
plot of LBM results for
velocityu (left), LBMvs
analytical solution of
velocity profile along
channel cross
section (right)

Table 1.
Poiseuille flow:
maximal velocity as
computed by LBM vs
number of lattice cells
across channel breadth
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Δp ¼ σ
1

R1

þ 1

R2

� �
(30)

where σ is the surface tension at the fluids interface and R1, R2 are the principal radii of the
interface curvature (for a spherical droplet R1 5 R2).

In order to test the implemented LBM surface tensionmodel, a spherical droplet formation
from an initially cubic bulk of liquid (with absence of gravity) is simulated, Figure 5.

Number of cells n LBM LLB [mm] Relative error jLLBM −Lj
L

½%� Order of convergence log2ð errnerr2n
Þ

16 10.312 3.12 –
32 10.156 1.56 0.99
64 10.078 0.78 1.00

Figure 3.
Poiseuille flow:

convergence of LBM
results to analytical

solution

Figure 4.
Advection: position of
the bulk of fluid (blue

cells) within the
computational domain
at time t 5 0 and 0.1 s

Table 2.
Advection:

convergence of LBM
results to theoretical
solution L 5 0.01 m
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The calculations are performed for liquids of the density ϱ 5 1,000 kg m�3, the kinematic
visocity ν 5 0.001 m2 s�1 and several values of the surface tension σ 5 {0.02, 0.04,
0.08} N m�1.

Within the LBM simulation, a cubic computational domain with sidelength of 0.1 m is
discretised by 403 403 40 grid cells. Initially, there is a cube of 303 303 30 liquid cells in
the centre of the domain, which is surrounded by void cells representing the air. During the
simulation, a spherical liquid droplet is created solely due to liquid’s surface tension. Since
the liquid viscosity is relatively high, any considerable droplet shape oscillations are
avoided.

When the fluid motion vanishes and the spherical droplet remains still, the resulting
Laplace pressureΔpLB computed by LBM is compared to its theoretically predicted valueΔp.
The theoretical and computational results are summarised in Table 3. In all cases, the relative
error

errσ ¼ jΔpLB � Δpj
Δp

(31)

is about 2% and the computed droplet radius is approximately 0.0465 m, which corresponds

to theoretically predicted radius 3
4

3
4π

� �1=3
L.

Convergence of the LBM solution of spherical droplet radius to its theoretically predicted
value is studied for the surface tension σ 5 0.02 N m�1 and provided in Table 4.

Surface tension σ[N m�1] Theory Δp[Pa] LBM ΔpLB[Pa] Relative error errσ[%]

0.02 0.860 0.877 1.98
0.04 1.720 1.756 2.09
0.08 3.439 3.517 2.27

Number of cells n LBM ΔpLB[Pa] Relative error errσ[%] Order of convergence log2ð errσnerrσ2n
Þ

16 0.9376 9.06 –
32 0.8833 2.75 1.72
64 0.8720 1.43 0.94

Figure 5.
Laplace pressure: LBM
simulation of liquid
droplet formation,
liquid cells (blue) at 0,
5,000 and 20,000
iterations

Table 3.
Laplace pressure:
comparison of
theoretical and LBM
solution of Laplace
pressure in spherical
droplet for several
surface tension values

Table 4.
Laplace pressure:
convergence of LBM
solution of Laplace
pressure to theoretical
solution for surface
tension σ5 0.02 N m�1
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3.4 Capillary rise
The third benchmark targets on the LBM capability of resolving the capillary effects caused
by the surface tension σ and by the adhesion between the liquid and capillary walls (which
leads to wetting the walls under the contact angle θ), Figure 6.When the distance between the
capillary walls is sufficiently small, the air–liquid interface curvature is approximately
uniform and a significant Laplace pressure is detected, Batchelor (2000). The theoretically
predicted height of the capillary riseH is given by balancing the Laplace pressure (30) and the
hydrostatic pressure exerted by the column of liquid

H ¼ 2σ cos θ
ϱgw

(32)

where w is the capillary breadth and g is the gravitational acceleration. Equation (32) is valid
for very narrow capillaries only, where a uniform curvature of the air–liquid interface
Rθ ¼ w

cos θ is expected. In larger capillaries, a correction term must be included, Bullard and
Garboczi (2009),

Hc ¼ 2σ cos θ
ϱgw

� w f ðθÞgðγÞe−4:48γ1=8 (33)

where f(θ) 5 9.24 cos θ þ 2.13 cos3θ, gðγÞ ¼ 0:834
ffiffiffi
γ

p
− 0:024γ and γ ¼ ϱgw2

σ .
The LBM solver is tested for a capillary rise in a narrow vertical channel between two

parallel infinitely wide plates partially immersed in an infinitely large pool of liquid. The test
fluid has the density ϱ 5 1,000 kg m�3, the surface tension σ 5 1 N m�1 and the dynamic
viscosity η5 0.0002 Pa s. The infinitely large pool is represented by a uniformly discretised
computational domain with periodic boundaries. The grid cell size is dx 5 0.0005 m.

In total, two sets of numerical tests are carried out. First, an accuracy of LBM results for
the capillary breadth w5 0.0095 m and three different values of contact angle θ5 {608, 458,
308} is examined. The LBM computed capillary riseHLB is compared to analytically predicted
values in Table 5). The deviation of HLB from both uncorrected and corrected theoretically
predicted values H and Hc is evaluated as

errH ¼ jHLB � H j
H

; (34)

errHc
¼ jHLB � Hcj

Hc

: (35)

Figure 6.
Capillary rise: scheme
of liquid level rise in

between capillarywalls

Experimental
validation of
free-surface

flow
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Since the capillary breadthw is relatively large, the deviation from the corrected capillary rise
errHc

should be preferred. Nevertheless, both errH and errHc
growwith decreasing value of the

contact angle. This can be attributed to the free-surface tracking described in section 2.2,
which assumes that each interface cell has at least one liquid and one gas cell in its
neighbourhood defined according to D3Q19 velocity model. This assumption is met for
contact angle θ≥ 458 (when the value of errHc

is close to 2% or smaller). However, the accuracy
of simulations for low contact angle values, such as θ 5 308, is limited.

The second set of LBM tests is performed for the contact angle θ5 458 and three values of
the capillary breadth w 5 {0.005, 0.0095, 0.0145} m. A qualitative comparison of the LBM
results is provided in Figure 7, which shows a cropped image of the same part of all capillaries
next to each other after the LBM computation has converged. The liquid cells are marked in
dark blue, the interface cells are cyan and the void (gas) cells are gray. The quantitative
results are presented in Table 6 together with the corresponding analytical data.

As expected, when assuming the uniform curvature of the free surface across the capillary
breadth, the difference between the LBM results and the theoretically predicted values by
equation (32), expressed in terms of errH, grows with the increasing capillary breadth w.
When the corrected relation (33) is considered, the relative error errHc

almost vanishes for
w 5 0.005 m and for w 5 0.0145 m. However, the resulting errHc

does not show any general
tendency with regards to value of w.

θ
[8]

Capillary w
[m]

Theory H
[m]

Theory Hc

[m]
LBM HLB

[m]
Rel. error errH

[%]
Rel. error
errHc

½%�
60 0.0095 0.0107 0.0103 0.0102 5.17 1.22
45 0.0095 0.0152 0.0145 0.0142 6.26 2.13
30 0.0095 0.0186 0.0178 0.0166 10.68 6.53

θ
[8]

Capillary w
[m]

Theory H
[m]

Theory Hc

[m]
LBM HLB

[m]
Rel. error errH

[%]
Rel. error
errHc

½%�
45 0.0050 0.0288 0.0285 0.0285 1.12 0.08
45 0.0095 0.0152 0.0145 0.0142 6.26 2.13
45 0.0145 0.0099 0.0090 0.0090 9.33 0.30

Table 5.
Capillary rise:
comparison between
results of LBM
simulations and
analytic solution for
capillary breadth
w 5 0.0095 m

Table 6.
Capillary rise:
comparison between
results of LBM
simulations and
analytic solution for
contact angle θ 5 458

Figure 7.
Capillary rise: LBM
results for contact
angle 458, capillary
breadth w equals to
0.005, 0.0095, 0.0145 m,
respectively
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4. Experimental measurements
The study targets on applications in casting industry, problems of free-surface flow within a
system of narrow rigid channels and thin cavities in particular. An experimental campaign on
gravity driven casting flow is designed in laboratory conditions, which enable a
straightforward control of each experimental run. A total of two experimental setups are
utilised.

Each test geometry is divided into two parts, a reservoir and a test section, by a removable
dam. Before each experimental run, the reservoir holds the prescribed amount of liquid while
the test section is empty and dry. When the gate is removed, the liquid flows into the test
section driven solely by gravity. The test geometries are made of transparent polymethyl
methacrylate, which allows for optical measurements of the fluid flow by a system of digital
cameras with native resolution of 4 Mpx @ 30 Hz and 2 Mpx @ 60 Hz.

Chemically stable moderately viscous aqueous solutions are employed such that the
resulting casting flow is laminar. The dynamic viscosity η, the surface tension σ and the
density ϱ of these Newtonian test fluids are summarised in Table 7. The presented data are
based on measurements of fresh fluid samples before every experimental run as well as of
already used samples during the casting experiments, Lobovsk�y and Mandys (2019).

4.1 Horizontal channel
Within the first setup, the test section is made of a single horizontal channel of constant
rectangular cross section, which does not branch, Figure 8. It has a single inlet and a single
outlet. The channel winds in a spiral so that its length is large in comparison to its cross
section. This enables to study evolution of the flow while the ratio between the force driving
the flow and the resistance of the system decreases significantly as the fluid front propagates

Experiment test fluid Horizontal channel sugar solution I Vertical labyrinth sugar solution II

ϱ [kg m�3] 1,244 1,240
η [mPa s] 41.6 45.4
σ [mN m�1] 60 64

Table 7.
Parameters of test

fluids used in
experimental
campaigns

Figure 8.
Horizontal channel:
test geometry with
dimensions in [mm]

Experimental
validation of
free-surface

flow
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along the channel and the liquid level in the reservoir drops. As a result, any inaccuracies get
pronounced along the channel length.

The horizontal channel is 3 mm high, 10 mm wide and 1,160 mm long. At its inlet, the
channel is connected to a vertical reservoir, which is initially filled upwith 90ml of liquid held
by a vertical gate. Details on the test geometry dimensions are displayed in Figure 8. The
small height of the channel helps to minimise the gate removal time, which is less than 1/60 s.
This estimate is limited by a time resolution of the applied camera system.

Once the gate is removed, the liquid flows rapidly into the test section under gravity. The
fluidmotion is recorded by the cameras at 20 Hz framerate. The fluid front propagation along
the channel centreline (blue line in Figure 9 (left)) is analysed, and a comparison of ten
experimental runs with LBM simulations is provided in Figure 9 (right).

Figure 9.
Horizontal channel:
channel centreline
(top), experimental and
LBM results for
fluid front propagation
(bottom)
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The quantitative analysis of the fluid front motion within the channel is given in Table 8,
which presents the arrival times of the fluid front at a location specified by the distance from
the gate. The average duration of the experimental run, i.e. the time until the entire channel
gets flooded, is about 40.38 s with the standard deviation of about 1.11 s. The minimal and
maximal duration of the test run is 38.20 and 42.05 s, respectively. Differences between the
tests may be attributed to manual removal of the gate, which causes variations in the gate
removal times. These variations cannot be quantified due to the temporal resolution of the
applied data acquisition system.

In order to address the LBM ability to quickly estimate the studied flow, LBM simulation
at coarse resolution is executed. A uniform computational grid of 242,000 cells provides only
three grid cells across the channel height. In the initial stage of the simulated flow, the LBM
data correspond well to the fastest experimental runs, Figure 9 (right). This is caused by a
computational representation of the gate removal, which is instantaneous. However at later
stages of the LBM simulation, the fluid front propagation slows down and the complete
channel flood time agrees well with the longest experimental runs. Thismay be observed also
in Figure 10, which presents the snapshots of the flow propagation within the horizontal
channel as recorded from a randomly selected experimental run and the LBM simulation.

The slower propagation of the LBM fluid front is affected by the applied computational
grid resolution. As discussed in section 3.1, for a low number of grid cells across the channel
section, the computed flow velocity gets underestimated by several percents. In addition, the
flow is also influenced by the viscosity model. Although the Newtonian viscosity is applied
within the LBM model, the dynamic viscosity of the experimentally examined fluid is not
constant, but slightly decreases with decreasing shear rate, Lobovsk�y and Mandys (2019).
Thus, the computationally predicted flux may be slightly underestimated. Despite these
limits, the computational model performs well and is capable of resolving the general trends
of the experimentally measured flow.

4.2 Vertical labyrinth
The second experimental setup provides data on the fluid flow within a vertically oriented
test section, Figure 11. This section consists of three straight vertical channels with constant
width and a trident of vertical channels, in whichwidth varies along their length. All channels
have a rectangular cross section and a constant breadth 10mm. There is a free outlet for air at
the end of each channel. Similarly to the previous setup, the vertical gate obstructs a 3 mm

Distance [mm] Min(t) [s] Mean(t) [s] Max(t) [s]

85 0.45 0.48 0.51
215 1.52 1.59 1.67
345 3.33 3.51 3.69
475 6.01 6.34 6.66
585 9.00 9.52 9.97
695 12.78 13.49 14.08
785 16.42 17.34 18.11
875 20.61 21.78 22.74
945 24.31 25.69 26.77
1,015 28.41 30.01 31.26
1,065 31.61 33.38 34.76
1,115 34.94 36.96 38.50
1,145 37.09 39.21 40.81
1,160 38.20 40.38 42.05

Table 8.
Horizontal channel:

arrival times at
selected locations and

statistics of all
executed

experimental runs

Experimental
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free-surface

flow
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high horizontal channel, which is a single inlet into the test section. The vertical reservoir is
initially filled-up with 72 ml of the test fluid.

The fluid flow is driven solely by gravity. Its evolution at the very beginning of a
randomly selected test is shown by four subsequent video frames recorded at 60 Hz in
Figure 12. The gate removal time is less than 1/60 s. Propagation of the fluid front within the
vertical labyrinth is then recorded at framerate of 30 Hz and analysed along the six pathlines
depicted as coloured lines in Figure 13.

Results of ten experimental test runs during the first 6 s of each run are presented in
Figure 14. The distinctive change in a slope of the plotted curves corresponds to locations
where the pathline changes its direction from horizontal to vertical or vice versa. Similarly to
the horizontal setup, variations in between experimental runs (which get pronounced
especially along the longer pathlines) are mainly related to nuances in the manual gate

Figure 10.
Horizontal channel:
comparison of
randomly selected
experimental run (top)
and LBM data (bottom)
at time 5, 15, 25 and 35 s

Figure 11.
Vertical labyrinth: test
geometry with
horizontally oriented
inlet, dimensions
in [mm]
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removal. The position Pcolor is defined as a distance from the gate along the pathline of given
color. Averaged values of Pcolor at selected time instants (based on data of all test runs) are
given in Table 9.

The LBMsimulations are performed for a uniform lattice grid of 600,000 cells with six cells
across the height of the horizontal inlet into the labyrinth. As displayed in Figure 14, the
numerical and the experimental results are in a good agreement, though there is an evident

Figure 12.
Vertical labyrinth: gate

removal and free-
surface flow at time

�1/60, 0/60, 1/60 and
2/60 s

Figure 13.
Vertical labyrinth: six

channel pathlines
depicted in six different

colours

Figure 14.
Vertical labyrinth:
experimental (solid

line) and LBM (circles)
results for fluid flow

propagation along the
six pathlines, coloured

according to the
pathline they refer to

Experimental
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free-surface
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deviation of the results when the fluid front reaches the base of the channel trident and later
along the horizontal channel parts. This is obvious also from qualitative comparison in
Figure 15. The delay of the LBM results may be well observed along the magenta pathline
where it gets pronounced with increasing time when the force driving the flow decreases and
the viscous forces become significant as the test section gets flooded. This difference in the
LBM results may be attributed to the spatial resolution of the computational grid as
discussed in the section above.

5. Conclusion
The performed experimental study provides original data on problems of gravity-driven free-
surface flow analogous to industrial casting processes. Simplified problems are presented

Time [s] Pred [mm] Pgreen [mm] Pblue [mm] Pmagenta [mm] Pcyan [mm] Pblack [mm]

0.067 19.12 19.12 19.12 19.12 19.12 19.12
0.133 41.49 46.03 46.03 46.03 46.03 46.03
0.233 49.91 56.79 63.44 63.44 63.44 63.44
0.333 56.16 61.48 68.39 73.14 73.14 73.14
0.4 59.22 63.72 70.90 78.14 78.14 78.14
0.6 66.37 70.50 77.72 93.77 93.77 93.77
0.8 72.20 76.58 84.10 109.17 109.17 109.17
1.0 77.32 82.13 90.02 123.21 123.21 123.21
1.2 81.89 87.02 94.83 133.89 133.89 133.89
1.3 83.97 89.16 96.88 139.48 139.48 139.48
1.4 85.89 91.10 98.73 142.11 142.11 142.11
1.7 90.94 96.22 103.73 146.35 146.35 146.35
1.8 92.41 97.70 105.21 148.07 148.07 148.07
1.9 93.80 99.17 106.93 153.49 153.49 153.49
2.0 95.19 100.77 109.09 160.16 159.45 160.16
2.1 96.63 102.43 111.41 164.27 162.29 164.27
2.2 98.03 104.16 113.57 167.14 163.05 167.14
2.4 100.81 107.52 117.19 173.44 164.11 173.44
2.6 103.51 110.52 120.21 179.72 165.27 179.72
2.7 104.78 111.87 121.54 182.69 165.71 182.69
2.8 105.97 113.14 122.77 186.34 166.25 184.16
2.9 107.13 114.32 123.93 189.60 166.95 185.48
3.2 110.13 117.43 127.04 200.35 169.63 188.75
3.5 112.69 120.07 129.77 212.16 172.47 192.01
3.6 113.49 120.86 130.64 215.13 173.64 193.38
3.7 114.25 121.66 131.48 217.31 174.97 194.89
3.8 114.97 122.42 132.33 218.58 176.29 196.19
4.0 116.32 123.89 133.95 221.56 178.59 198.58
4.2 117.59 125.26 135.52 224.52 180.52 201.07
4.4 118.78 126.54 136.98 227.29 181.89 203.07
4.6 119.89 127.72 138.24 229.66 182.83 204.35
4.7 120.40 128.26 138.79 232.11 182.87 204.85
4.8 120.89 128.77 139.33 233.61 183.10 205.30
4.9 121.38 129.25 139.77 235.93 183.47 205.69
5.0 121.81 129.68 140.24 237.96 183.84 206.08
5.1 122.21 130.11 140.66 240.18 183.73 206.53
5.4 123.32 131.22 141.80 247.64 185.15 207.63
5.7 124.21 132.14 142.75 255.13 186.48 208.80
6.0 124.96 132.91 143.60 262.02 188.08 210.07

Table 9.
Vertical labyrinth:
propagation of the fluid
front along selected
pathlines (averaged
data from all
experimental runs)
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and allow for a good control of execution of each experimental run, a repeatibility of the tests,
a straightforward analysis of the measured data and relatively simple description of the
experimental problem. The newly designed experimental test setups are suitable for
benchmarking the computational solvers for problems of free-surface viscous flow within a
system of narrow long channels. The experiments target on complex three-dimensional
channel structures, which are present in multiple-gate runner designs and geometrically
complex casting moulds. All casting flow experimental data are supported by the rheological
measurements.

Based on the recorded experimental data, it is shown that the implemented LBM code is
capable of resolving the flow propagation with reasonable accuracy for relatively coarse
computational grids. This decreases the computational demands of the numerical
simulations and makes the presented LBM approach attractive for real-world applications.
Results of the LBM simulations for the adopted benchmark tests agree well with their
theoretical solution. The method shows the second-order convergence for viscous flows with
absence of free-surface boundaries. When the free-surface boundaries apply, the LBM
scheme becomes first-order convergent. This is caused by the first-order accuracy of the
discretisation applied within the VOF scheme, which is used to track the liquid–gas interface.

Since the LBM algorithm does not require solution of the non-linear Poisson equation for
the pressure field in the incompressible fluid, the LBM solution is competitive in terms of
computational efficiency as long as transient flow problems are of interest (an explicit time
integration scheme is applied). The performance of the presented LBM scheme may be
further improved by application of adaptive meshing techniques, which are convenient for
discretisation of geometrically complex computational domains with large variations in
channel cross section. Nevertheless, the presented LBM algorithm may be efficiently applied
in a variety of manufacturing processes.

All presented calculations are performed on a single CPU using up to four cores.
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