Search results

1 – 10 of 47
Article
Publication date: 27 October 2023

Murat Gunduz, Khalid Naji and Omar Maki

This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates…

Abstract

Purpose

This paper aims to present the development of a holistic campus facility management (CFM) performance assessment framework that incorporates a fuzzy logic approach and integrates a comprehensive set of key factors for successful management of campus facilities. The devised framework aims to cater to the needs of campus facilities management firms and departments for the purpose of gauging and assessing their performance across different management domains. Through this approach, facility management organizations can detect potential areas of enhancement and adopt preemptive steps to evade issues, foster progress and ensure success.

Design/methodology/approach

After a comprehensive analysis of the literature, conducting in-depth interviews with industry experts and employing the Delphi technique in two rounds, a total of 45 indicators critical to CFM success were identified and subsequently sorted into seven distinct groups. Through an online questionnaire, 402 subject-matter experts proficiently assessed the significance of the critical success indicators and their groups. A fuzzy logic framework was developed to evaluate and quantify a firm's compliance with the critical success indicators and groups of indicators. The framework was subsequently weighted using computations of the relative importance index (RII) based on the responses received from the questionnaire participants. The initial section of the framework involved a comprehensive analysis of the firm's performance vis-à-vis the indicators, while the latter part sought to evaluate the impact of the indicators groups on the overall firm's performance.

Findings

The utilization of fuzzy logic has uncovered the significant effects each effective CFM key indicator on indicators groups, as well as the distinct effects of each CFM indicators group on the overall performance of CFM. The results reveal that financial management, communications management, sustainability and environment management and workforce management are the most impactful indicators groups on the CFM performance. This suggests that it is imperative for management to allocate increased attention to these specific areas.

Originality/value

This study contributes to the advancement of current knowledge by revealing vital indicators of effective CFM and utilizing them to construct a thorough fuzzy logic framework that can assist in evaluating the effectiveness of CFM firms worldwide. This has the potential to provide crucial assistance to facility management organizations, facility managers and policymakers in their quest for informed decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 September 2023

Fatma Ben Hamadou, Taicir Mezghani, Ramzi Zouari and Mouna Boujelbène-Abbes

This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine…

Abstract

Purpose

This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine learning techniques, before and during the COVID-19 pandemic. More specifically, the authors investigate the impact of the investor's sentiment on forecasting the Bitcoin returns.

Design/methodology/approach

This method uses feature selection techniques to assess the predictive performance of the different factors on the Bitcoin returns. Subsequently, the authors developed a forecasting model for the Bitcoin returns by evaluating the accuracy of three machine learning models, namely the one-dimensional convolutional neural network (1D-CNN), the bidirectional deep learning long short-term memory (BLSTM) neural networks and the support vector machine model.

Findings

The findings shed light on the importance of the investor's sentiment in enhancing the accuracy of the return forecasts. Furthermore, the investor's sentiment, the economic policy uncertainty (EPU), gold and the financial stress index (FSI) are the top best determinants before the COVID-19 outbreak. However, there was a significant decrease in the importance of financial uncertainty (FSI and EPU) during the COVID-19 pandemic, proving that investors attach much more importance to the sentimental side than to the traditional uncertainty factors. Regarding the forecasting model accuracy, the authors found that the 1D-CNN model showed the lowest prediction error before and during the COVID-19 and outperformed the other models. Therefore, it represents the best-performing algorithm among its tested counterparts, while the BLSTM is the least accurate model.

Practical implications

Moreover, this study contributes to a better understanding relevant for investors and policymakers to better forecast the returns based on a forecasting model, which can be used as a decision-making support tool. Therefore, the obtained results can drive the investors to uncover potential determinants, which forecast the Bitcoin returns. It actually gives more weight to the sentiment rather than financial uncertainties factors during the pandemic crisis.

Originality/value

To the authors’ knowledge, this is the first study to have attempted to construct a novel crypto sentiment measure and use it to develop a Bitcoin forecasting model. In fact, the development of a robust forecasting model, using machine learning techniques, offers a practical value as a decision-making support tool for investment strategies and policy formulation.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 February 2024

Mohammad A Gharaibeh and Ayman Alkhatatbeh

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use…

Abstract

Purpose

The continuous increase of energy demands is a critical worldwide matter. Jordan’s household sector accounts for 44% of overall electricity usage annually. This study aims to use artificial neural networks (ANNs) to assess and forecast electricity usage and demands in Jordan’s residential sector.

Design/methodology/approach

Four parameters are evaluated throughout the analysis, namely, population (P), income level (IL), electricity unit price (E$) and fuel unit price (F$). Data on electricity usage and independent factors are gathered from government and literature sources from 1985 to 2020. Several networks are analyzed and optimized for the ANN in terms of root mean square error, mean absolute percentage error and coefficient of determination (R2).

Findings

The predictions of this model are validated and compared with literature-reported models. The results of this investigation showed that the electricity demand of the Jordanian household sector is mainly driven by the population and the fuel price. Finally, time series analysis approach is incorporated to forecast the electricity demands in Jordan’s residential sector for the next decade.

Originality/value

The paper provides useful recommendations and suggestions for the decision-makers in the country for dynamic planning for future resource policies in the household sector.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 27 July 2023

Ayman Abdalmajeed Alsmadi, Ahmed Shuhaiber and Khaled Saleh Al-Omoush

The purpose of this paper is to investigate the determinants of users' intention to continue to invest in cryptocurrencies. The paper also aims to examine the impact of hedonic…

Abstract

Purpose

The purpose of this paper is to investigate the determinants of users' intention to continue to invest in cryptocurrencies. The paper also aims to examine the impact of hedonic motivation and the legal environment on perceived value in cryptocurrencies.

Design/methodology/approach

A questionnaire was designed to obtain data from 258 respondents in UAE. The Structural Equation Modeling – Partial Least Squares (SEM-PLS) was used to evaluate the research model and test the hypotheses.

Findings

The results of smart PLS path analysis showed that perceived value, hedonic motivation, gambling attitude, and price volatility were significant determinants of the continued intention to invest in cryptocurrency. This study also revealed that hedonic motivation enhances perceived value and improves the perception of cryptocurrencies value from user's perspective.

Originality/value

This study provides new insights into the literature on cryptocurrencies adoption, and delivers advanced understanding about the determinants of user's intention to continue investing in cryptocurrencies. In addition, the study provides important practical implications for cryptocurrencies companies to promote this financial technology to users by enhancing the knowledge of policy makers about how investors think and get motivated towards a continued investment of cryptocurrencies.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 August 2023

Mohammad Iranmanesh, Morteza Ghobakhloo, Behzad Foroughi, Mehrbakhsh Nilashi and Elaheh Yadegaridehkordi

This study aims to explore and ranks the factors that might determine attitudes and intentions toward using autonomous vehicles (AVs).

Abstract

Purpose

This study aims to explore and ranks the factors that might determine attitudes and intentions toward using autonomous vehicles (AVs).

Design/methodology/approach

The “technology acceptance model” (TAM) was extended by assessing the moderating influences of personal-related factors. Data were collected from 378 Vietnamese and analysed using a combination of “partial least squares” and the “adaptive neuro-fuzzy inference system” (ANFIS) technique.

Findings

The findings demonstrated the power of TAM in explaining the attitude and intention to use AVs. ANFIS enables ranking the importance of determinants and predicting the outcomes. Perceived ease of use and attitude were the most crucial drivers of attitude and intention to use AVs, respectively. Personal innovativeness negatively moderates the influence of perceived ease of use on attitude. Data privacy concerns moderate positively the impact of perceived usefulness on attitude. The moderating effect of price sensitivity was not supported.

Practical implications

These findings provide insights for policymakers and automobile companies' managers, designers and marketers on driving factors in making decisions to adopt AVs.

Originality/value

The study extends the AVs literature by illustrating the importance of personal-related factors, ranking the determinants of attitude and intention, illustrating the inter-relationships among AVs adoption factors and predicting individuals' attitudes and behaviours towards using AVs.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 21 December 2023

Edgardo Sica, Hazar Altınbaş and Gaetano Gabriele Marini

Public debt forecasts represent a key policy issue. Many methodologies have been employed to predict debt sustainability, including dynamic stochastic general equilibrium models…

Abstract

Purpose

Public debt forecasts represent a key policy issue. Many methodologies have been employed to predict debt sustainability, including dynamic stochastic general equilibrium models, the stock flow consistent method, the structural vector autoregressive model and, more recently, the neuro-fuzzy method. Despite their widespread application in the empirical literature, all of these approaches exhibit shortcomings that limit their utility. The present research adopts a different approach to public debt forecasts, that is, the random forest, an ensemble of machine learning.

Design/methodology/approach

Using quarterly observations over the period 2000–2021, the present research tests the reliability of the random forest technique for forecasting the Italian public debt.

Findings

The results show the large predictive power of this method to forecast debt-to-GDP fluctuations, with no need to model the underlying structure of the economy.

Originality/value

Compared to other methodologies, the random forest method has a predictive capacity that is granted by the algorithm itself. The use of repeated learning, training and validation stages provides well-defined parameters that are not conditional to strong theoretical restrictions This allows to overcome the shortcomings arising from the traditional techniques which are generally adopted in the empirical literature to forecast public debt.

Details

Journal of Economic Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 August 2023

Smita Abhijit Ganjare, Sunil M. Satao and Vaibhav Narwane

In today's fast developing era, the volume of data is increasing day by day. The traditional methods are lagging for efficiently managing the huge amount of data. The adoption of…

Abstract

Purpose

In today's fast developing era, the volume of data is increasing day by day. The traditional methods are lagging for efficiently managing the huge amount of data. The adoption of machine learning techniques helps in efficient management of data and draws relevant patterns from that data. The main aim of this research paper is to provide brief information about the proposed adoption of machine learning techniques in different sectors of manufacturing supply chain.

Design/methodology/approach

This research paper has done rigorous systematic literature review of adoption of machine learning techniques in manufacturing supply chain from year 2015 to 2023. Out of 511 papers, 74 papers are shortlisted for detailed analysis.

Findings

The papers are subcategorised into 8 sections which helps in scrutinizing the work done in manufacturing supply chain. This paper helps in finding out the contribution of application of machine learning techniques in manufacturing field mostly in automotive sector.

Practical implications

The research is limited to papers published from year 2015 to year 2023. The limitation of the current research that book chapters, unpublished work, white papers and conference papers are not considered for study. Only English language articles and review papers are studied in brief. This study helps in adoption of machine learning techniques in manufacturing supply chain.

Originality/value

This study is one of the few studies which investigate machine learning techniques in manufacturing sector and supply chain through systematic literature survey.

Highlights

  1. A comprehensive understanding of Machine Learning techniques is presented.

  2. The state of art of adoption of Machine Learning techniques are investigated.

  3. The methodology of (SLR) is proposed.

  4. An innovative study of Machine Learning techniques in manufacturing supply chain.

A comprehensive understanding of Machine Learning techniques is presented.

The state of art of adoption of Machine Learning techniques are investigated.

The methodology of (SLR) is proposed.

An innovative study of Machine Learning techniques in manufacturing supply chain.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 13 January 2022

Zeinab Rahimi Rise and Mohammad Mahdi Ershadi

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts…

Abstract

Purpose

This paper aims to analyze the socioeconomic impacts of infectious diseases based on uncertain behaviors of social and effective subsystems in the countries. The economic impacts of infectious diseases in comparison with predicted gross domestic product (GDP) in future years could be beneficial for this aim along with predicted social impacts of infectious diseases in countries.

Design/methodology/approach

The proposed uncertain SEIAR (susceptible, exposed, infectious, asymptomatic and removed) model evaluates the impacts of variables on different trends using scenario base analysis. This model considers different subsystems including healthcare systems, transportation, contacts and capacities of food and pharmaceutical networks for sensitivity analysis. Besides, an adaptive neuro-fuzzy inference system (ANFIS) is designed to predict the GDP of countries and determine the economic impacts of infectious diseases. These proposed models can predict the future socioeconomic trends of infectious diseases in each country based on the available information to guide the decisions of government planners and policymakers.

Findings

The proposed uncertain SEIAR model predicts social impacts according to uncertain parameters and different coefficients appropriate to the scenarios. It analyzes the sensitivity and the effects of various parameters. A case study is designed in this paper about COVID-19 in a country. Its results show that the effect of transportation on COVID-19 is most sensitive and the contacts have a significant effect on infection. Besides, the future annual costs of COVID-19 are evaluated in different situations. Private transportation, contact behaviors and public transportation have significant impacts on infection, especially in the determined case study, due to its circumstance. Therefore, it is necessary to consider changes in society using flexible behaviors and laws based on the latest status in facing the COVID-19 epidemic.

Practical implications

The proposed methods can be applied to conduct infectious diseases impacts analysis.

Originality/value

In this paper, a proposed uncertain SEIAR system dynamics model, related sensitivity analysis and ANFIS model are utilized to support different programs regarding policymaking and economic issues to face infectious diseases. The results could support the analysis of sensitivities, policies and economic activities.

Highlights:

  • A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

  • Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

  • Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

  • An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

  • A real case study is considered to evaluate the performances of the proposed models.

A new system dynamics model is proposed in this paper based on an uncertain SEIAR model (Susceptible, Exposed, Infectious, Asymptomatic, and Removed) to model population behaviors;

Different subsystems including healthcare systems, transportation, contacts, and capacities of food and pharmaceutical networks are defined in the proposed system dynamics model to find related sensitivities;

Different scenarios are analyzed using the proposed system dynamics model to predict the effects of policies and related costs. The results guide lawmakers and governments' actions for future years;

An adaptive neuro-fuzzy inference system (ANFIS) is designed to estimate the gross domestic product (GDP) in future years and analyze effects of COVID-19 based on them;

A real case study is considered to evaluate the performances of the proposed models.

Details

Journal of Economic and Administrative Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1026-4116

Keywords

1 – 10 of 47