Search results

1 – 2 of 2
Article
Publication date: 13 October 2022

Eman Salim, Wael S. Mohamed and Rasha Sadek

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such…

Abstract

Purpose

Paper aims to evaluate the efficiency of traditional chitosan, nano chitosan, and chitosan nanocomposites for consolidating aged papyrus samples. Cellulose-based materials, such as papyrus sheets and paper, which are the most common types of writing supports for works of art in many museums and archive. They are subjected to different types of deterioration factors that may lead to many conservation problems. Consolidation treatment is one of the most common conservation treatments, which should have perform after much testing to select the appropriate consolidants.

Design/methodology/approach

This research paper aims to evaluate the resistance of traditional chitosan, nanochitosan and chitosan/zinc oxide nanocomposite as an eco-friendly papyrus strengthening. Untreated and treated papyrus was thermally aged and characterized via scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the papyrus specimens was also determined against four tested pathogenic bacteria by disc diffusion method: MRSA, Staphylococcus aureus, E. coli and P. aeruginosa.

Findings

The results revealed that chitosan nanocomposite showed a remarkable enhancement of papyrus tensile properties and presence of ZnO prevents the effects of biodeterioration.

Originality/value

Zinc oxide nanoparticles enhance the optical properties and increase the chemical reactions between the consolidating material and the treated papyrus.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 April 2024

Salwa Moustafa Amer Mahmoud, Tarek Hamdy, Mohamed Fares, Wissam Ayman, Shrouk Muhamed, Aya Abdel Khaliq and Lilian Salah

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it…

Abstract

Purpose

This paper aims to investigate the ability of traditional biopolymers, such as funori or the nanoscale form of cellulose nanocrystals, to consolidate fragile paper and preserve it for as long as possible.

Design/methodology/approach

Degraded papers dating back two centuries were separated into paper samples for consolidation processes. Funori – a marine spleen – was used as a traditional consolidation material and a mixture with ZnO NPs compared with modern materials, such as cellulose nanocrystals. The samples were aged for 25 years, examinations and analyses were performed using scanning electron microscopy and color change was assessed using the CIELAB system, X-ray diffraction and Fourier-transform infrared spectroscopy.

Findings

According to the results, using traditional materials to consolidate damage, such as funori, after aging resulted in glossiness on the surface, a color change and increased water content and oxidation. Furthermore, samples treated with a mixture of ZnO NPs and funori revealed that the mixture improved the sample properties and increased the degree of crystallization. Cellulose nanocrystals improved the surface, filled gaps, formed bridges between the fibers and acted as a protector from aging effects.

Originality/value

This paper highlights the ability of nanomaterials to enhance the properties of materials as additives and treat the paper manuscripts from weaknesses.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2