Search results

1 – 10 of 12
Article
Publication date: 1 December 2020

V. Indragandhi, A. Chitra, R. Raja Singh, Aishvardhan Bajiya, Yash Tilak and V. Subramaniyaswamy

This proposed drone is used for surveillance purpose like medical, agriculture and military in the commercial point of view with less cost and size.

Abstract

Purpose

This proposed drone is used for surveillance purpose like medical, agriculture and military in the commercial point of view with less cost and size.

Design/methodology/approach

During emergency calls out the technology enabled modes to have quick and timely response for the mankind. As human society continues to spend months together locked inside their homes, it leads to the entire change in the human lifestyle. This also demands the society and the government to get adopt with the technological concepts such as drones to handle this pandemic scenario in a more scientific and safe mode. The major constraints in the utility segment is the cost and performance factor of the drones. This paper aims to design a drone flight management system, which can be used to operate single or multiple drone systems in a wireless mode. The major focus of this work is to minimize the cost of drone flying systems so that it can be accessible to a more massive crowd. The technological design behind the drone has been discussed in detail with mathematical equations. Also the control aspect has been presented in this work. For comparative analysis three drone have been designed and their performance have been compared.

Findings

The multi drone is designed , modelling is done and implemented in simulation and hardware. Its having less weight and cost compared to existing drone models.

Originality/value

75% original, 25% of the basic clarifications are taken from existing works.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 April 2022

Khin Thida San and Yoon Seok Chang

The purpose of this study is to solve NP-Hard drone routing problem for the last-mile distribution. This is suitable for the multi-drones parcel delivery for the various items…

Abstract

Purpose

The purpose of this study is to solve NP-Hard drone routing problem for the last-mile distribution. This is suitable for the multi-drones parcel delivery for the various items from a warehouse to many locations.

Design/methodology/approach

This study conducts as a mission assignment of the single location per flight with the constraint satisfactions such as various payloads in weight, drone speeds, flight times and coverage distances. A genetic algorithm is modified as the concurrent heuristics approach (GCH), which has the knapsack problem dealing initialization, gene elitism (crossover) and gene replacement (mutation). Those proposed operators can reduce the execution time consuming and enhance the routing assignment of multiple drones. The evaluation value of the routing assignment can be calculated from the chromosome/individual representation by applying the proposed concurrent fitness.

Findings

This study optimizes the total traveling time to accomplish the distribution. GCH is flexible and can provide a result according to the first-come-first-served, demanded weight or distance priority.

Originality/value

GCH is an alternative option, which differs from conventional vehicle routing researches. Such researches (traveling time optimization) attempt to minimize the total traveling time, distance or the number of vehicles by assuming all vehicles have the same traveling speed; therefore, a specific vehicle assignment to a location is neglected. Moreover, the main drawback is those concepts can lead the repeated selection of best quality vehicles concerning the speed without considering the vehicle fleet size and coverage distance while this study defines the various speeds for the vehicles. Unlike those, the concurrent concept ensures a faster delivery accomplishment by sharing the work load with all participant vehicles concerning to their different capabilities. If the concurrent assignment is applied to the drone delivery effectively, the entire delivery can be accomplished relatively faster than the traveling time optimization.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 September 2024

Jiaqing Shen, Xu Bai, Xiaoguang Tu and Jianhua Liu

Unmanned aerial vehicles (UAVs), known for their exceptional flexibility and maneuverability, have become an integral part of mobile edge computing systems in edge networks. This…

Abstract

Purpose

Unmanned aerial vehicles (UAVs), known for their exceptional flexibility and maneuverability, have become an integral part of mobile edge computing systems in edge networks. This paper aims to minimize system costs within a communication cycle. To this end, this paper has developed a model for task offloading in UAV-assisted edge networks under dynamic channel conditions. This study seeks to efficiently execute task offloading while satisfying UAV energy constraints, and validates the effectiveness of the proposed method through performance comparisons with other similar algorithms.

Design/methodology/approach

To address this issue, this paper proposes a task offloading and trajectory optimization algorithm using deep deterministic policy gradient, which jointly optimizes Internet of Things (IoT) device scheduling, power distribution, task offloading and UAV flight trajectory to minimize system costs.

Findings

The analysis of simulation results indicates that this algorithm achieves lower redundancy compared to others, along with reductions in task size by 22.8%, flight time by 34.5%, number of IoT devices by 11.8%, UAV computing power by 25.35% and the required cycle for per-bit tasks by 33.6%.

Originality/value

A multi-objective optimization problem is established under dynamic channel conditions, and the effectiveness of this approach is validated.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 26 August 2024

Hong Long and Haibin Duan

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Abstract

Purpose

The purpose of this paper is to present and implement a task allocation method based on game theory for reconnaissance mission planning of UAVs and USVs system.

Design/methodology/approach

In this paper, the decision-making framework via game theory of mission planning is constructed. The mission planning of UAVs–USVs is transformed into a potential game optimization problem by introducing a minimum weight vertex cover model. The modified population-based game-theoretic optimizer (MPGTO) is used to improve the efficiency of solving this complex multi-constraint assignment problem.

Findings

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Research limitations/implications

Several simulations are carried out to exhibit that the proposed algorithm obtains the superiority on quality and efficiency of mission planning solutions to some existing approaches.

Practical implications

The proposed framework and algorithm are expected to be applied to complex real scenarios with uncertain targets and heterogeneity.

Originality/value

The decision framework via game theory is proposed for the mission planning problem of UAVs–USVs and a MPGTO with swarm evolution, and the adaptive iteration mechanism is presented for ensuring the efficiency and quality of the solution.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 13 May 2024

Sunil Kumar, Ridhima Sharma and Firdous Ahmad Malik

Introduction: This study investigates the COVID-19 pandemic’s effects on the sustainability of the supply chain. It investigates how modern supply networks and procedures were…

Abstract

Introduction: This study investigates the COVID-19 pandemic’s effects on the sustainability of the supply chain. It investigates how modern supply networks and procedures were equipped for such a catastrophe, and the pandemic’s effects on the environment, highlighting the significance of studying resilience and sustainability concurrently.

Purpose: The study acknowledges the importance of environmental sustainability for businesses and the need to examine trends in organisational, customer, policy, and distribution networks.

Need for the Study: The COVID-19 pandemic has significantly impacted supply chains. This study aims to provide insight into the long-term repercussions of the crisis and the importance of incorporating environmental considerations.

Methodology: The study uses a mixed-methods approach to evaluate the effects of the COVID-19 pandemic on supply networks and environmental sustainability indices. Data from industry reports, governmental publications, polls, and qualitative research techniques have been gathered.

Findings: The results of this study advance our understanding of how to preserve supply chains in the wake of the COVID-19 pandemic. It highlights the need for enhanced resilience and sustainability measures, expose the flaws and weaknesses of contemporary supply networks, and uncover developing patterns and tactics in customer behaviour, policy frameworks, distribution networks, and supply chain management.

Practical Implications: The COVID-19 pandemic has provided businesses, decision makers, and researchers with guidance on handling its potential and challenges – increasing the supply chain’s resistance to future interruptions, incorporating environmentally friendly practises, developing policies to support resilient and sustainable supply chains, adapting to changing consumer tastes, increasing effectiveness, and minimising the environmental impact of distribution networks.

Details

VUCA and Other Analytics in Business Resilience, Part B
Type: Book
ISBN: 978-1-83753-199-8

Keywords

Article
Publication date: 13 November 2017

Martin Molina, Ramon A. Suarez-Fernandez, Carlos Sampedro, Jose Luis Sanchez-Lopez and Pascual Campoy

The purpose of this paper is to describe the specification language TML for adaptive mission plans that the authors designed and implemented for the open-source framework…

Abstract

Purpose

The purpose of this paper is to describe the specification language TML for adaptive mission plans that the authors designed and implemented for the open-source framework Aerostack for aerial robotics.

Design/methodology/approach

The TML language combines a task-based hierarchical approach together with a more flexible representation, rule-based reactive planning, to facilitate adaptability. This approach includes additional notions that abstract programming details. The authors built an interpreter integrated in the software framework Aerostack. The interpreter was validated with flight experiments for multi-robot missions in dynamic environments.

Findings

The experiments proved that the TML language is easy to use and expressive enough to formulate adaptive missions in dynamic environments. The experiments also showed that the TML interpreter is efficient to execute multi-robot aerial missions and reusable for different platforms. The TML interpreter is able to verify the mission plan before its execution, which increases robustness and safety, avoiding the execution of certain plans that are not feasible.

Originality/value

One of the main contributions of this work is the availability of a reliable solution to specify aerial mission plans, integrated in an active open-source project with periodic releases. To the best knowledge of the authors, there are not solutions similar to this in other active open-source projects. As additional contributions, TML uses an original combination of representations for adaptive mission plans (i.e. task trees with original abstract notions and rule-based reactive planning) together with the demonstration of its adequacy for aerial robotics.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 10 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 25 August 2020

Jafar Tavoosi

In this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more…

Abstract

Purpose

In this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more accurate the reference position signals tracking, the proposed control system will be better.

Design/methodology/approach

In the proposed method, for the vertical flight mode, first the model reference adaptive controller (MRAC) operates and for the horizontal flight, the model predictive control (MPC) will operate. Since the linear model is used for both of these controllers and naturally has an error compared to the real nonlinear model, a neural network is used to compensate for them. So the main novelties of this paper are a new hybrid control design (MRAC & MPC) and a neural network-based compensator for tiltrotor UAV.

Findings

The proper performance of the proposed control method in the simulation results is clear. Also the results showed that the role of compensator is very important and necessary, especially in extreme speed wind conditions and uncertain parameters.

Originality/value

Novel hybrid control method. 10;-New method to use neural network as compensator in an UAV.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 4
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 12 September 2022

Varun Kumar K.A., Priyadarshini R., Kathik P.C., Madhan E.S. and Sonya A.

Data traffic through wireless communication is significantly increasing, resulting in the frequency of streaming applications as various formats and the evolution of the Internet…

157

Abstract

Purpose

Data traffic through wireless communication is significantly increasing, resulting in the frequency of streaming applications as various formats and the evolution of the Internet of Things (IoT), such as virtual reality, edge device based transportation and surveillance systems. Growth in kind of applications resulted in increasing the scope of wireless communication and allocating a spectrum, as well as methods to decrease the intervention between nearby-located wireless links functioning on the same spectrum bands and hence to proliferation for the spectral efficiency. Recent advancement in drone technology has evolved quickly leading on board sensors with increased energy, storage, communication and processing capabilities. In future, the drone sensor networks will be more common and energy utilization will play a crucial role to maintain a fully functional network for the longest period of time. Envisioning the aerial drone network, this study proposes a robust high level design of algorithms for the drones (group coordination). The proposed design is validated with two algorithms using multiple drones consisting of various on-board sensors. In addition, this paper also discusses the challenges involved in designing solutions. The result obtained through proposed method outperforms the traditional techniques with the transfer rate of more than 3 MB for data transfer in the drone with coordination

Design/methodology/approach

Fair Scheduling Algorithm (FSA) using a queue is a distributed slot assignment algorithm. The FSA executes in rounds. The duration of each round is dynamic based upon the delay in the network. FSA prevents the collision by ensuring that none of the neighboring node gets the same slot. Nodes (Arivudainambi et al., 2019) which are separated by two or more hopes can get assigned in the same slot, thereby preventing the collision. To achieve fairness at the scheduling level, the FSA maintains four different states for each node as IDLE, REQUEST, GRANT and RELEASE.

Findings

A multi-unmanned aerial vehicle (UAV) system can operate in both centralized and decentralized manner. In a centralized system, the ground control system will take care of drone data collection, decisions on navigation, task updation, etc. In a decentralized system, the UAVs are unambiguously collaborating on various levels as mentioned in the centralized system to achieve the goal which is represented in Figure 2.

Research limitations/implications

However, the multi-UAVs are context aware in situations such as environmental observation, UAV–UAV communication and decision-making. Independent of whether operation is centralized or decentralized, this study relates the goals of the multi-UAVs are sensing, communication and coordination among other UAVs, etc. Figure 3 shows overall system architecture.

Practical implications

The individual events attempts in the UAV’s execution are required to complete the mission in superlative manner which affects in every multi UAV system. This multi UAV systems need to take a steady resolute on what way UAV has to travel and what they need to complete to face the critical situations in changing of environments with the uncertain information. This coordination algorithm has certain dimensions including events that they needs to resolute on, the information that they used to make a resolution, the resolute making algorithm, the degree of decentralization. In multi UAV systems, the coordinated events ranges from lower motion level.

Originality/value

This study has proposed a novel self-organizing coordination algorithm for multi-UAV systems. Further, the experimental results also confirm that is robust to form network at ease. The testbed for this simulation to sensing, communication, evaluation and networking. The algorithm coordination has to testbed with multi UAVs systems. The two scheduling techniques has been used to transfer the packets using done network. The self-organizing algorithm (SOA) with fair scheduling queue outperforms the weighted queue scheduling in the transfer rate with less loss and time lag. The results obtained through from Figure 10 clearly indicates that the fair queue scheduling with SOA have several advantages over weighted fair queue in different parameters.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 13 February 2024

Amer Jazairy, Emil Persson, Mazen Brho, Robin von Haartman and Per Hilletofth

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into…

1916

Abstract

Purpose

This study presents a systematic literature review (SLR) of the interdisciplinary literature on drones in last-mile delivery (LMD) to extrapolate pertinent insights from and into the logistics management field.

Design/methodology/approach

Rooting their analytical categories in the LMD literature, the authors performed a deductive, theory refinement SLR on 307 interdisciplinary journal articles published during 2015–2022 to integrate this emergent phenomenon into the field.

Findings

The authors derived the potentials, challenges and solutions of drone deliveries in relation to 12 LMD criteria dispersed across four stakeholder groups: senders, receivers, regulators and societies. Relationships between these criteria were also identified.

Research limitations/implications

This review contributes to logistics management by offering a current, nuanced and multifaceted discussion of drones' potential to improve the LMD process together with the challenges and solutions involved.

Practical implications

The authors provide logistics managers with a holistic roadmap to help them make informed decisions about adopting drones in their delivery systems. Regulators and society members also gain insights into the prospects, requirements and repercussions of drone deliveries.

Originality/value

This is one of the first SLRs on drone applications in LMD from a logistics management perspective.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 22 March 2024

Sanaz Khalaj Rahimi and Donya Rahmani

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on…

74

Abstract

Purpose

The study aims to optimize truck routes by minimizing social and economic costs. It introduces a strategy involving diverse drones and their potential for reusing at DNs based on flight range. In HTDRP-DC, trucks can select and transport various drones to LDs to reduce deprivation time. This study estimates the nonlinear deprivation cost function using a linear two-piece-wise function, leading to MILP formulations. A heuristic-based Benders Decomposition approach is implemented to address medium and large instances. Valid inequalities and a heuristic method enhance convergence boundaries, ensuring an efficient solution methodology.

Design/methodology/approach

Research has yet to address critical factors in disaster logistics: minimizing the social and economic costs simultaneously and using drones in relief distribution; deprivation as a social cost measures the human suffering from a shortage of relief supplies. The proposed hybrid truck-drone routing problem minimizing deprivation cost (HTDRP-DC) involves distributing relief supplies to dispersed demand nodes with undamaged (LDs) or damaged (DNs) access roads, utilizing multiple trucks and diverse drones. A Benders Decomposition approach is enhanced by accelerating techniques.

Findings

Incorporating deprivation and economic costs results in selecting optimal routes, effectively reducing the time required to assist affected areas. Additionally, employing various drone types and their reuse in damaged nodes reduces deprivation time and associated deprivation costs. The study employs valid inequalities and the heuristic method to solve the master problem, substantially reducing computational time and iterations compared to GAMS and classical Benders Decomposition Algorithm. The proposed heuristic-based Benders Decomposition approach is applied to a disaster in Tehran, demonstrating efficient solutions for the HTDRP-DC regarding computational time and convergence rate.

Originality/value

Current research introduces an HTDRP-DC problem that addresses minimizing deprivation costs considering the vehicle’s arrival time as the deprivation time, offering a unique solution to optimize route selection in relief distribution. Furthermore, integrating heuristic methods and valid inequalities into the Benders Decomposition approach enhances its effectiveness in solving complex routing challenges in disaster scenarios.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 12