Search results

1 – 10 of 329
Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM…

Abstract

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM) to achieve optimal outcomes. Digital supply chain (DSC) employs digital technologies (DTs) such as artificial intelligence (AI), Internet of Things (IoT), and big data analytics to provide extensive datasets and valuable insights pertaining to supply chain operations. MCDM techniques employ these realizations to facilitate informed decision-making through the assessment of multiple competing criteria. Usually MCDM approaches are used in the academic research with comparatively lesser application in industry. We argue that MCDM methodologies can play an instrumental role in DSCM, specifically in the areas of supplier selection, demand forecasting, and inventory management. Nevertheless, the integration of MCDM like AHP, ANP, DEMATEL, etc., with decision support systems presents several challenges, including concerns regarding the quality of data and the intricate task of assigning weights to various factors.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Article
Publication date: 28 February 2023

V.H. Lad, D.A. Patel, K.A. Chauhan and K.A. Patel

The work on bridge resilience assessment includes quantitative and qualitative approaches to compare the multiple bridges based on their resilience. But still, the bridge…

Abstract

Purpose

The work on bridge resilience assessment includes quantitative and qualitative approaches to compare the multiple bridges based on their resilience. But still, the bridge resilience obtained by these assessment approaches is inefficient when prioritising multiple bridges to improve their resilience. Therefore, this study aims to develop a methodology for prioritising the bridges to improve their resilience.

Design/methodology/approach

The research methodology follows three sequential phases. In the first phase, criteria importance through intercriteria correlation (CRITIC) technique is used to compute the criteria weights. The criteria considered are age, area, design high flood level, finish road level FRL and resilience index of bridges. While 12 river-crossing bridges maintained by one bridge owner are considered as alternatives. Then, in the second phase, the prioritisation of each bridge is evaluated using five techniques, including technique for order of preference by similarity to ideal solution, VIKOR (in Serbian, Visekriterijumska Optimizacija I Kompromisno Resenje), additive ratio assessment, complex proportional assessment and multi-objective optimisation method by ratio analysis. Finally, in the third phase, the results of all five techniques are integrated using CRITIC and the weighted sum method.

Findings

The result of the study enables bridge owners to deal with the particular bridge that requires resilience improvement. The study concluded that it is not enough to consider only the bridge resilience index to improve its resilience. The prioritisation exercise should consider various other criteria that are not preferred during the bridge resilience assessment process.

Originality/value

The proposed methodology is a novel framework based on the existing multi-criteria decision-making (MCDM) techniques for contributing knowledge in the domain of bridge resilience management. It can efficiently overcome the pitfall of decision-making when two bridges have the same resilience index score.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 6 August 2024

Rabia Hassan, Zeeshan Ahmad Arfeen, Mehreen Kausar Azam, Zain ul Abiden Akhtar, Abubakar Siddique and Muhammad Rashid

Material selection, driven by wide and often conflicting objectives, is an important, sometimes difficult problem in material engineering. In this context, multi-criteria…

Abstract

Purpose

Material selection, driven by wide and often conflicting objectives, is an important, sometimes difficult problem in material engineering. In this context, multi-criteria decision-making (MCDM) methodologies are effective. An approach of MCDM is needed to cater to criteria of material assortment simultaneously. More firms are now concerned about increasing their productivity using mathematical tools. To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material. In addition, by using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), the inherent ambiguities of decision-makers in paired evaluations are considered in this research. It goes on to construct a mathematical bi-objective model for determining the best item to purchase.

Design/methodology/approach

The entropy perspective is implemented in this paper to evaluate the weight parameters, while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system. The intermediate pipes are used to join the components of the exhaust systems. The materials usually used to manufacture intermediate pipe are SUS 436LM, SUS 430, SUS 304, SUS 436L, SUH 409 L, SUS 441 L and SUS 439L. These seven materials are evaluated based on tensile strength (TS), hardness (H), elongation (E), yield strength (YS) and cost (C). A hybrid methodology combining entropy-based criteria weighting, with the TOPSIS for alternative ranking, is pursued to identify the optimal design material for an engineered application in this paper. This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes. After that, the authors searched for and considered eight materials and evaluated them on the following five criteria: (1) TS, (2) YS, (3) H, (4) E and (5) C. The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes, on their performance and on the cost. In this structure, the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment. This essentially measures the quantity of information each criterion contribution, indicating the relative importance of these criteria better. Subsequently, the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative. The results show that SUS 309, SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.

Findings

The material matrix of the decision presented in Table 3 was normalized through Equation 5, as shown in Table 5, and the matrix was multiplied with weighting criteria ß_j. The obtained weighted normalized matrix V_ij is presented in Table 6. However, the ideal, worst and best value was ascertained by employing Equation 7. This study is based on the selection of material for the development of intermediate pipe using MCDM, and it involves four basic stages, i.e. method of translation criteria, screening process, method of ranking and search for methods. The selection was done through the TOPSIS method, and the criteria weight was obtained by the entropy method. The result showed that the top three materials are SUS 309, SUS 432L and SUS 436 LM, respectively. For the future work, it is suggested to select more alternatives and criteria. The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality (ELECTRE), Decision-Making Trial and Evaluation Laboratory (DEMATEL) and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE).

Originality/value

The results provide important conclusions for material selection in this targeted application, verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.

Details

Railway Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 28 June 2024

Imadeddine Oubrahim and Naoufal Sefiani

Over the last 2 decades, supply chain sustainability research has become a highly dynamic and fruitful study area. This field has garnered significant attention due to its…

Abstract

Purpose

Over the last 2 decades, supply chain sustainability research has become a highly dynamic and fruitful study area. This field has garnered significant attention due to its potential to reshape decision-making processes within supply chains. At the same time, the practical side of supply chain operations remains intensely competitive in today’s business landscape. Furthermore, the current academic research aims to outline effective strategies for achieving sustainability across supply chains, particularly in the manufacturing sector. In response to these challenges, this research has conducted an integrated multi-criteria decision-making approach to evaluate sustainable supply chain performance from the triple bottom line perspective, including financial, environmental, and social performance.

Design/methodology/approach

The initial stage involves selecting the crucial criteria (short-term and long-term) and alternatives for sustainable supply chain performance (SSCP) from experts and conducting an in-depth literature review. Initially, there were 17 criteria, but after a pilot test with co-authors and online discussions with experts, the number of criteria was subsequently reduced to 9. In the second phase, the Best-Worst Method (BWM) was applied to rank and prioritize the criteria. The third and final stage examined the causal relationship between the identified criteria, utilizing the Decision-Making Trial and Evaluation Laboratory (DEMATEL) technique.

Findings

Based on BWM analysis results, the top three criteria in terms of prominence are: (1) return on investment (ROI), (2) product quality, and (3) manufacturing lead time. Out of the three alternatives, financial performance (FP) is the most crucial dimension for SSCP, followed by environmental performance (ENP) and social performance (SP). On the other hand, the DEMATEL approach showed that work health and safety (short-term criterion), asset utilization (long-term criterion), energy consumption (long-term criterion), waste disposal (long-term criterion), manufacturing lead time (short-term criterion), and on-time delivery (short-term criterion) are categorized within the cause group, while criteria such as return on investment (ROI) (long-term criterion), customer-service level (short-term criterion), and product quality (long-term criterion) fall into the effect group.

Research limitations/implications

The proposed study has certain drawbacks that pave the way for future research directions. First, it is worth noting the need for a larger sample size to ensure the reliability of results, the potential inclusion of additional criteria to enhance the assessment of sustainability performance, and the consideration of a qualitative approach to gain deeper insights into the outcomes. In addition, fuzziness in qualitative subjective perception could be imperative when collecting data to ensure its reliability, as translating experts’ perceptions into exact numerical values can be challenging because human perceptions often carry elements of uncertainty or vagueness. Therefore, fuzzy integrated MCDM frameworks are better suited for future research to handle the uncertainties involved in human perceptions, making it a more appropriate approach for decision-making in scenarios where traditional MCDM methods may prove insufficient.

Practical implications

The proposed framework will enable decision-makers to gain deeper insights into how various decision criteria impact SSCP, thus providing a comprehensive evaluation of SSCP that considers multiple dimensions, such as financial, environmental, and social performance within the manufacturing sector.

Originality/value

The proposed study is the first empirical study to integrate both BWM and DEMATEL approaches to evaluate sustainable supply chain performance in the manufacturing context.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 13 June 2023

Aniruddh Nain, Deepika Jain and Ashish Trivedi

This paper aims to examine and compare extant literature on the application of multi-criteria decision-making (MCDM) techniques in humanitarian operations (HOs) and humanitarian…

Abstract

Purpose

This paper aims to examine and compare extant literature on the application of multi-criteria decision-making (MCDM) techniques in humanitarian operations (HOs) and humanitarian supply chains (HSCs). It identifies the status of existing research in the field and suggests a roadmap for academicians to undertake further research in HOs and HSCs using MCDM techniques.

Design/methodology/approach

The paper systematically reviews the research on MCDM applications in HO and HSC domains from 2011 to 2022, as the field gained traction post-2004 Indian Ocean Tsunami phenomena. In the first step, an exhaustive search for journal articles is conducted using 48 keyword searches. To ensure quality, only those articles published in journals featuring in the first quartile of the Scimago Journal Ranking were selected. A total of 103 peer-reviewed articles were selected for the review and then segregated into different categories for analysis.

Findings

The paper highlights insufficient high-quality research in HOs that utilizes MCDM methods. It proposes a roadmap for scholars to enhance the research outcomes by advocating adopting mixed methods. The analysis of various studies revealed a notable absence of contextual reference. A contextual mind map specific to HOs has been developed to assist future research endeavors. This resource can guide researchers in determining the appropriate contextual framework for their studies.

Practical implications

This paper will help practitioners understand the research carried out in the field. The aspiring researchers will identify the gap in the extant research and work on future research directions.

Originality/value

To the best of the authors’ knowledge, this is the first literature review on applying MCDM in HOs and HSCs. It summarises the current status and proposes future research directions.

Details

Benchmarking: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 4 December 2023

Ved Prabha Toshniwal, Rakesh Jain, Gunjan Soni, Sachin Kumar Mangla and Sandeep Narula

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within…

Abstract

Purpose

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within pharmaceutical and related enterprises. The aim is to facilitate a smooth transition to advanced technologies while concurrently achieving environmental sustainability.

Design/methodology/approach

Selection of a suitable TA theory is carried out using a hybrid multi-criteria decision-making (MCDM) approach incorporating PIvot Pairwise RElative Criteria Importance Assessment (PIPRECIA) and Fuzzy Measurement of alternatives and ranking according to Compromise solution (F-MARCOS) methods. A group of three experts is formulated for the ranking of criteria and alternatives based on those criteria.

Findings

The results indicate that out of all six TA models considered unified theory of acceptance and use of technology (UTAUT) model gets the highest utility function value, followed by the technical adoption model (TAM). Further, sensitivity analysis is conducted to confirm the validity of the MCDM model employed.

Research limitations/implications

Challenging times like COVID-19 pointed out the importance of technology in the pharmaceutical and healthcare sectors. TA studies in this area can help in the identification of critical factors that can assist pharmaceutical firms in their efforts to embrace emerging technologies, enhance their outputs and increase their efficiency.

Originality/value

The novelty of this research lies in the fact that the utilization of a TA theory prior to its implementation has not been witnessed in existing scholarly literature. The utilization of a TA theory, specifically within the pharmaceutical industry, can assist enterprises in directing their attention toward pertinent factors when contemplating the implementation of emerging technologies and achieving sustainable development.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 November 2022

Ashis Mitra

The present study aims to demonstrate the application of newly developed combinative distance-based assessment (CODAS) approach for grading and selection of Tossa jute fibres…

Abstract

Purpose

The present study aims to demonstrate the application of newly developed combinative distance-based assessment (CODAS) approach for grading and selection of Tossa jute fibres, which possesses some unique features uncommon to other variants of multi-criteria decision-making (MCDM) method.

Design/methodology/approach

The CODAS method was used in this study to rank/grade ten candidate lots of Tossa fibres on the basis of six apposite jute fibre properties, namely, fibre defect, root content, fineness, strength, colour and density. These six fibre properties were considered as the six decision criteria, here, and they were assigned weights as determined previously by an earlier researcher using analytic hierarchy process. The grading of jute fibres was done based on a comprehensive single index known as the assessment scores (Hi), in descending order of magnitude.

Findings

Among the 10 Tossa jute lots, T2 was ranked 1 (top grade) because of the highest assessment score of 6.887, followed by T1 with Rank 2 (assessment score 1.830). Because of the least assessment score of −2.795, the candidate lot T4 was considered as the worst, and hence ranked 10. The overall ranking pattern given by the CODAS method was similar to the TOPSIS approach done by Ghosh and Das (2013). This study was supported by various sensitivity analyses to judge the efficacy of the present approach. No occurrence of rank reversal during the sensitivity analyses obviously corroborates the robustness and stability of the CODAS method.

Practical implications

Jute pricing is fixed solely by the quality for which grading of fibre is prerequisite. The traditional “Hand and Eye” method or Bureau of Indian Standards (BIS) system for jute grading is basically subjective assessment and need domain expertise. MCDM is reported as the most viable solution which gives due importance to the fibre parameters while grading the fibres based on a single index. The present study demonstrates the maiden application of CODAS to address the fibre grading problems for jute industries. This approach can also be extended to solve other decision problems of textile industry, in general.

Originality/value

CODAS is a recently developed exponent of MCDM. Uniqueness of the present study lies in the fact that this is the first ever application of CODAS in the domain of textile industry, in general, and jute industry, in particular. CODAS approach is very simple involving a few simple mathematical equations yet a potent tool of decision-making. This method possesses some features uncommon in other variants of MCDM. Moreover, the efficacy of CODAS method is investigated through various sensitivity analyses, which has been ignored in the earlier approaches.

Details

Research Journal of Textile and Apparel, vol. 28 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 August 2024

Harun Turkoglu, Emel Sadikoglu, Sevilay Demirkesen, Atilla Damci and Serra Acar

The successful completion of linear infrastructure construction projects such as railroads, roads, tunnels, and pipelines relies heavily on decision-making processes during…

Abstract

Purpose

The successful completion of linear infrastructure construction projects such as railroads, roads, tunnels, and pipelines relies heavily on decision-making processes during planning phase. Professionals in the construction industry emphasize that determining the starting point of a linear infrastructure construction project is one of the most important decisions to be made in the planning phase. However, the existing literature does not specifically focus on selection of the starting point of the segments to be constructed. Therefore, it is of utmost importance to develop a multi-criteria decision-making (MCDM) model to support selection of the starting point of the segments to be constructed in linear infrastructure construction projects.

Design/methodology/approach

Based on the characteristics of the railroad projects and insights gathered from expert interviews, the appropriate criteria for the model were determined. Once the criteria were determined, a decision hierarchy was developed and the weights of the criteria (w_i) were calculated using DEcision MAking Trial and Evaluation Laboratory (DEMATEL) method. Then, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), COmplex PRoportional Assessment (COPRAS), and evaluation based on distance from average solution (EDAS) methods were used. The alternatives were ranked in terms of their priority with TOPSIS method based on relative closeness (Ci) of each alternative to the ideal solution, COPRAS method based on quantitative utility (Ui) for each alternative and EDAS method based on evaluation score (ASi) for all alternatives. The results were compared with each other.

Findings

The study reveals the effects of all criteria on the proposed model. The results of DEMATEL method indicated that quantity of aggregate (w_i = 0.075), ballast (w_i = 0.071), and sub-ballast (w_i = 0.069) are the most important criteria in starting location selection for railroads, where earthquake (w_i = 0.046), excavation cost (w_i = 0.054), and longest distance from borrow pit (w_i = 0.055) were found to be less important criteria. The starting location alternatives were ranked based on TOPSIS, COPRAS and EDAS methods. The A-1 alternative was selected as the most appropriate alternative (Ci = 0.64; Ui = 100%; ASi = 0.81), followed by A-6 alternative (Ci = 0.61; Ui = 97%; ASi = 0.73) and A-7 alternative (Ci = 0.59; Ui = 94%; ASi = 0.60). Even tough different methods were used, they provided compatible results where the same ranking was achieved except three alternatives.

Originality/value

This study identifies novel criteria for the starting location selection of railroad construction based on the data of a railroad project. This study uses different methods for selecting the starting location. Considering the project type and its scope, the model can be used by decision-makers in linear infrastructure projects for which efficient planning and effective location selection are critical for successful operations.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 December 2023

Santonab Chakraborty, Rakesh D. Raut, T.M. Rofin and Shankar Chakraborty

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources…

Abstract

Purpose

Supplier selection along with continuous evaluation of their performance is a crucial activity in healthcare supply chain management for effective utilization of scarce resources while providing quality service at an affordable price, and minimizing chances of stock-out, avoiding serious consequences on the illness or fatality of the patients. Presence of both qualitative and quantitative evaluation criteria, set of potential suppliers and participation of different stakeholders with varying interest make healthcare supplier selection a challenging task which can be effectively solved using any of the multi-criteria decision making (MCDM) methods.

Design/methodology/approach

To deal with various qualitative criteria, like cost, quality, delivery performance, reliability, responsiveness and flexibility, this paper proposes integration of grey system theory with a newly developed MCDM tool, i.e. mixed aggregation by comprehensive normalization technique (MACONT) to identify the best performing supplier for pharmaceutical items in a healthcare unit from a pool of six competing alternatives based on the opinions of three healthcare professionals.

Findings

While assessing importance of the six evaluation criteria and performance of the alternative healthcare suppliers against those criteria using grey numbers, and exploring use of three normalization procedures and two aggregation operations of MACONT method, this integrated approach singles out S5 as the most compromised healthcare supplier for the considered problem. A sensitivity analysis of its ranking performance against varying values of both balance parameters and preference parameters also validates its solution accuracy and robustness.

Originality/value

This integrated approach can thus efficiently solve healthcare supplier selection problems based on qualitative evaluation criteria in uncertain group decision making environment. It can also be deployed to deal with other decision making problems in the healthcare sector, like supplier selection for healthcare devices, performance evaluation of healthcare units, ranking of physicians etc.

Details

Grey Systems: Theory and Application, vol. 14 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

1 – 10 of 329