Search results

1 – 10 of over 1000
Article
Publication date: 8 December 2022

Chunming Tong, Zhenbao Liu, Wen Zhao, Baodong Wang, Yao Cheng and Jingyan Wang

This paper aims to propose an online local trajectory planner for safe and fast trajectory generation that combines the jerk-limited trajectory (JLT) generation algorithm and the…

Abstract

Purpose

This paper aims to propose an online local trajectory planner for safe and fast trajectory generation that combines the jerk-limited trajectory (JLT) generation algorithm and the particle swarm optimization (PSO) algorithm. A trajectory switching algorithm is proposed to improve the trajectory tracking performance. The proposed system generates smooth and safe flight trajectories online for quadrotors.

Design/methodology/approach

First, the PSO algorithm method can obtain the optimal set of target points near the path points obtained by the global path searching. The JLT generation algorithm generates multiple trajectories from the current position to the target points that conform to the kinetic constraints. Then, the generated multiple trajectories are evaluated to pick the obstacle-free trajectory with the least cost. A trajectory switching strategy is proposed to switch the unmanned aerial vehicle (UAV) to a new trajectory before the UAV reaches the last hovering state of the current trajectory, so that the UAV can fly smoothly and quickly.

Findings

The feasibility of the designed system is validated through online flight experiments in indoor environments with obstacles.

Practical implications

The proposed trajectory planning system is integrated into a quadrotor platform. It is easily implementable onboard and computationally efficient.

Originality/value

The proposed local planner for trajectory generation and evaluation combines PSO and JLT generation algorithms. The proposed method can provide a collision-free and continuous trajectory, significantly reducing the required computing resources. The PSO algorithm locally searches for feasible target points near the global waypoint obtained by the global path search. The JLT generation algorithm generates trajectories from the current state toward each point contained by the target point set. The proposed trajectory switching strategy can avoid unnecessary hovering states in flight and ensure a continuous and safe flight trajectory. It is especially suitable for micro quadrotors with a small payload and limited onboard computing power.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 May 2020

Haojie Zhang, Yudong Zhang and Tiantian Yang

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy…

Abstract

Purpose

As wheeled mobile robots find increasing use in outdoor applications, it becomes more important to reduce energy consumption to perform more missions efficiently with limit energy supply. The purpose of this paper is to survey the current state-of-the-art on energy-efficient motion planning (EEMP) for wheeled mobile robots.

Design/methodology/approach

The use of wheeled mobile robots has been increased to replace humans in performing risky missions in outdoor applications, and the requirement of motion planning with efficient energy consumption is necessary. This study analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present. The dynamic constraints play a key role in EEMP problem, which derive the power model related to energy consumption. The surveyed approaches differ in the used steering mechanisms for wheeled mobile robots, in assumptions on the structure of the environment and in computational requirements. The comparison among different EEMP methods is proposed in optimal, computation time and completeness.

Findings

According to lots of literature in EEMP problem, the research results can be roughly divided into online real-time optimization and offline optimization. The energy consumption is considered during online real-time optimization, which is computationally expensive and time-consuming. The energy consumption model is used to evaluate the candidate motions offline and to obtain the optimal energy consumption motion. Sometimes, this optimization method may cause local minimal problem and even fail to track. Therefore, integrating the energy consumption model into the online motion planning will be the research trend of EEMP problem, and more comprehensive approach to EEMP problem is presented.

Research limitations/implications

EEMP is closely related to robot’s dynamic constraints. This paper mainly surveyed in EEMP problem for differential steered, Ackermann-steered, skid-steered and omni-directional steered robots. Other steering mechanisms of wheeled mobile robots are not discussed in this study.

Practical implications

The survey of performance of various EEMP serves as a reference for robots with different steering mechanisms using in special scenarios.

Originality/value

This paper analyses a lot of motion planning technologies in terms of energy efficiency for wheeled mobile robots from 2000 to present.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 March 2017

Abhishek Jha and Shital S. Chiddarwar

This paper aims to present a new learning from demonstration-based trajectory planner that generalizes and extracts relevant features of the desired motion for an industrial robot.

482

Abstract

Purpose

This paper aims to present a new learning from demonstration-based trajectory planner that generalizes and extracts relevant features of the desired motion for an industrial robot.

Design/methodology/approach

The proposed trajectory planner is based on the concept of human arm motion imitation by the robot end-effector. The teleoperation-based real-time control architecture is used for direct and effective imitation learning. Using this architecture, a self-sufficient trajectory planner is designed which has inbuilt mapping strategy and direct learning ability. The proposed approach is also compared with the conventional robot programming approach.

Findings

The developed planner was implemented on the 5 degrees-of-freedom industrial robot SCORBOT ER-4u for an object manipulation task. The experimental results revealed that despite morphological differences, the robot imitated the demonstrated trajectory with more than 90 per cent geometric similarity and 60 per cent of the demonstrations were successfully learned by the robot with good positioning accuracy. The proposed planner shows an upper hand over the existing approach in robustness and operational ease.

Research limitations/implications

The approach assumes that the human demonstrator has the requisite expertise of the task demonstration and robot teleoperation. Moreover, the kinematic capabilities and the workspace conditions of the robot are known a priori.

Practical implications

The real-time implementation of the proposed methodology is possible and can be successfully used for industrial automation with very little knowledge of robot programming. The proposed approach reduces the complexities involved in robot programming by direct learning of the task from the demonstration given by the teacher.

Originality/value

This paper discusses a new framework blended with teleoperation and kinematic considerations of the Cartesian space, as well joint space of human and industrial robot and optimization for the robot programming by demonstration.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2008

William Owen, Elizabeth Croft and Beno Benhabib

Recent research has considered robotic machining as a dextrous alternative to traditional CNC machine tools for complex sculptured surfaces. One challenge in using robotic…

Abstract

Purpose

Recent research has considered robotic machining as a dextrous alternative to traditional CNC machine tools for complex sculptured surfaces. One challenge in using robotic machining is that the stiffness is lower than traditional machine tools, due to the cantilever design of the links and low‐torsional stiffness of the actuators. This paper seeks to examine this limitation, using optimization algorithms to determine the best trajectories for the manipulators such that the stiffness is maximized.

Design/methodology/approach

The issue of low stiffness is addressed with an integrated off‐line planner and real‐time re‐planner. The available manipulator stiffness is maximized during off‐line planning through a trajectory resolution method that exploits the nullspace of the robot machining system. In response to unmodeled disturbances, a real‐time trajectory re‐planner utilizes a time‐scaling method to reduce the tool speed, thereby reducing the demand on the actuator torques, increasing the robot's dynamic stiffness capabilities. During real‐time re‐planning, priorities are assigned to conflicting performance criteria such as stiffness, collision avoidance, and joint limits.

Findings

The algorithms developed were able to generate trajectories with stiffer configurations, which resulted in a reduction in the actuator torques. The real‐time re‐planner successfully allowed the process plan to continue when disturbances were encountered.

Research limitations/implications

Simulations are presented to demonstrate the effectiveness of the approach.

Practical implications

Addressing the limitation of stiffness in serial‐link manipulators will enable robots to become more suitable for machining tasks. The real‐time re‐planning approach will allow robots to become more autonomous during the execution of a given task.

Originality/value

An integrated off‐line and real‐time planning approach has been applied to robotic machining.

Details

Industrial Robot: An International Journal, vol. 35 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 12 July 2022

Nianfei Gan, Miaomiao Zhang, Bing Zhou, Tian Chai, Xiaojian Wu and Yougang Bian

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Abstract

Purpose

The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.

Design/methodology/approach

To deal with dynamic obstacles for autonomous vehicles during parking, a long- and short-term mixed trajectory planning algorithm is proposed in this paper. In long term, considering obstacle behavior, A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory. In short term, this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model. Moreover, the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.

Findings

Compared with the spline optimization method, the results show that the proposed method can generate efficient obstacle avoidance strategies, safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.

Originality/value

It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Article
Publication date: 4 December 2019

Fei Guo, Shoukun Wang, Junzheng Wang and Huan Yu

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse…

Abstract

Purpose

In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain.

Design/methodology/approach

Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions.

Findings

A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation.

Research limitations/implications

Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains.

Originality/value

This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2024

Yahao Wang, Zhen Li, Yanghong Li and Erbao Dong

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new…

Abstract

Purpose

In response to the challenge of reduced efficiency or failure of robot motion planning algorithms when faced with end-effector constraints, this study aims to propose a new constraint method to improve the performance of the sampling-based planner.

Design/methodology/approach

In this work, a constraint method (TC method) based on the idea of cross-sampling is proposed. This method uses the tangent space in the workspace to approximate the constrained manifold pattern and projects the entire sampling process into the workspace for constraint correction. This method avoids the need for extensive computational work involving multiple iterations of the Jacobi inverse matrix in the configuration space and retains the sampling properties of the sampling-based algorithm.

Findings

Simulation results demonstrate that the performance of the planner when using the TC method under the end-effector constraint surpasses that of other methods. Physical experiments further confirm that the TC-Planner does not cause excessive constraint errors that might lead to task failure. Moreover, field tests conducted on robots underscore the effectiveness of the TC-Planner, and its excellent performance, thereby advancing the autonomy of robots in power-line connection tasks.

Originality/value

This paper proposes a new constraint method combined with the rapid-exploring random trees algorithm to generate collision-free trajectories that satisfy the constraints for a high-dimensional robotic system under end-effector constraints. In a series of simulation and experimental tests, the planner using the TC method under end-effector constraints efficiently performs. Tests on a power distribution live-line operation robot also show that the TC method can greatly aid the robot in completing operation tasks with end-effector constraints. This helps robots to perform tasks with complex end-effector constraints such as grinding and welding more efficiently and autonomously.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2019

Francisco Valero, Francisco Rubio, Antonio José Besa and Carlos Llopis-Albert

The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse…

Abstract

Purpose

The purpose is to create an algorithm that optimizes the trajectories that an autonomous vehicle must follow to reduce its energy consumption and reduce the emission of greenhouse gases.

Design/methodology/approach

An algorithm is presented that respects the dynamic constraints of the robot, including the characteristics of power delivery by the motor, the behaviour of the tires and the basic inertial parameters. Using quadratic sequential programming with distributed and non-monotonous search direction (Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search), an optimization algorithm proposed and developed by Professor K. Schittkowski is implemented.

Findings

Relations between important operating variables have been obtained, such as the evolution of the autonomous vehicle’s velocity, the driving torque supplied by the engine and the forces acting on the tires. In a subsequent analysis, the aim is to analyse the relationship between trajectory made and energy consumed and calculate the reduction of greenhouse gas emissions. Also this method has been checked against another different methodology commented on in the references.

Research limitations/implications

The main limitation comes from the modelling that has been done. As greater is the mechanical systems analysed, more simplifying hypotheses should be introduced to solve the corresponding equations with the current computers. However, the solutions are obtained and they can be used qualitatively to draw conclusions.

Practical implications

One main objective is to obtain guidelines to reduce greenhouse gas emissions by reducing energy consumption in the realization of autonomous vehicles’ trajectories. The first step to achieve that is to obtain a good model of the autonomous vehicle that takes into account not only its kinematics but also its dynamic properties, and to propose an optimization process that allows to minimize the energy consumed. In this paper, important relationships between work variables have been obtained.

Social implications

The idea is to be friendly with nature and the environment. This algorithm can help by reducing an instance of greenhouse gases.

Originality/value

Originality comes from the fact that we not only look for the autonomous vehicle’s modelling, the simulation of its motion and the analysis of its working parameters, but also try to obtain from its working those guidelines that are useful to reduce the energy consumed and the contamination capability of these autonomous vehicles or car-like robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 6 June 2018

Stefan Hartman

Tourism areas are challenged to become adaptive areas in the context of a dynamic networked society and globalizing economy. The purpose of this paper is to contribute to an…

1762

Abstract

Purpose

Tourism areas are challenged to become adaptive areas in the context of a dynamic networked society and globalizing economy. The purpose of this paper is to contribute to an enhanced understanding and conceptualization of adaptive tourism areas by drawing attention to “fitness landscapes,” a metaphor that is used in complexity theories to visualize development trajectories of adaptive systems.

Design/methodology/approach

Fitness landscapes, and its underlying theories, are useful to conceptualize tourism area development as a stepwise movement through a dynamic landscape with peaks and valleys. Doing so allows us to highlight why adaptation is a crucial property for tourism areas that are embedded in dynamic contexts and offers a frame of thought for how tourism areas can be managed.

Findings

The article raises awareness about and draws attention to a set of factors and conditions that support tourism planners and managers in enhancing the capacity of tourism areas to adaptively respond to changing circumstances.

Originality/value

Introducing fitness landscapes contribute to the discussion on adaptive capacity building – a topic that contributes to managing uncertain futures and is likely to gain importance in the dynamic society. Moreover, it helps as well as stimulates tourism scholars to further develop this topic. Finally, it helps tourism planners to build adaptive capacity in practice.

Details

Journal of Tourism Futures, vol. 4 no. 2
Type: Research Article
ISSN: 2055-5911

Keywords

Article
Publication date: 1 October 2002

Heping Chen, Weihua Sheng, Ning Xi, Mumin Song and Yifan Chen

Automatic trajectory generation for spray painting is highly desirable for today’s automotive manufacturing. Generating paint gun trajectories for free‐form surfaces to satisfy…

1184

Abstract

Automatic trajectory generation for spray painting is highly desirable for today’s automotive manufacturing. Generating paint gun trajectories for free‐form surfaces to satisfy paint thickness requirements is still highly challenging due to the complex geometry of free‐form surfaces. In this paper, a CAD‐guided paint gun trajectory generation system for free‐form surfaces has been developed. The system utilizes the CAD information of a free‐form surface to be painted and a paint gun model to generate a paint gun trajectory to satisfy the paint thickness requirements. A paint thickness verification method is also provided to verify the generated trajectories. The simulation results have shown that the trajectory generation system achieves satisfactory performance. This trajectory generation system can also be applied to generate trajectories for many other CAD‐guided robot trajectory planning applications.

Details

Industrial Robot: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000