Search results

1 – 10 of over 1000
Article
Publication date: 1 October 2005

Y. Zhang

To form and develop a new mode of mixed elastohydrodynamic lubrication (mixed EHL) which is more realistic and of more application values to a practical elastohydrodynamic contact…

Abstract

Purpose

To form and develop a new mode of mixed elastohydrodynamic lubrication (mixed EHL) which is more realistic and of more application values to a practical elastohydrodynamic contact on gears, cams and roller bearings than the previous and current existing mixed EHL models.

Design/methodology/approach

The representative theoretical and experimental studies on elastohydrodynamic lubrication (EHL) and mixed EHL carried out in the previous and recent time, including those of the author, are reviewed. The obtained results on EHL and mixed EHL in those studies and the viewpoints on the mode of mixed EHL based on those results developed in those studies are compared and evaluated. Strong proves are formed on the new mode of mixed EHL proposed in the present paper based on these comparisons and evaluations.

Findings

Strong viewpoints are formed on the mode of the occurrence of dry contact in EHL in a practical concentrated contact. A new mode of mixed EHL is proposed by incorporating this mode of the occurrence of dry contact in EHL. Also, comments and evaluations on the previous researches on mixed EHL are made.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the occurrence of dry contact in EHL. This new mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future time. It provides a clearer way to this research.

Details

Industrial Lubrication and Tribology, vol. 57 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Yanzhong Wang, Chao Guo, Yuan Li and Guoxing Li

This study aims to establish a friction coefficient model relative to the rotation speed of a wet clutch engagement, which can predict friction coefficient under different stages…

Abstract

Purpose

This study aims to establish a friction coefficient model relative to the rotation speed of a wet clutch engagement, which can predict friction coefficient under different stages of slipping velocity and different load pressures. In particular, the model has been improved by accounting the speed effect for the perdition of wet friction-element boundary friction, which is significant for understanding the friction mechanisms and for supporting the development of more efficient and related products.

Design/methodology/approach

This research investigated the mechanism of wet friction in a wet clutch engagement. A mixed friction model is established based on the asperity model and Newton’s law of viscosity. To obtain a friction coefficient computed by the model, the normal load shared by both asperities and lubrication fluid needs to be determined. Therefore, rough surface contact mechanism is analysed; a surface topography model is established; and surface parameters are obtained by means of surface topography measurement and reconstruction. Finally, verification of the mixed friction model is achieved.

Findings

Friction will be generated by both the asperity contact and the lubrication film shear relative to the rotation speed. And, the higher the relative speed, the larger the shearing power of lubrication film. It is caused by decrease in contact area of asperity. Surface morphology of a sintered bronze friction disk was obtained by a Laser-Micro-Test. The predicted results by the established model show that the total friction coefficient slightly reduced and then increased suddenly with speed. The surface topography model is responsible for the nonlinear behaviour of the asperity friction. Results of the simulation model are in agreement with those of the wet clutch engagement experiments.

Originality/value

This research is original and it is supported by the national defence project. The wet friction element which is applied on tracked vehicles is analysed for the first time. Through the model, the trend of the friction coefficient can be more accurately predicted. The problem of the wet friction plate modelling difficult is solved by using the mixed friction model.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 July 2023

Minghui Yang, Hong Lu, Xinbao Zhang, Yong Quan Zhang, Zhang Jie Li and Wei Zhang

This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.

Abstract

Purpose

This study aims to investigate mixed lubrication performances of stern bearing in a misaligned state considering turbulence and bearing deformation impacts.

Design/methodology/approach

A mixed lubrication model of stern bearing is established. The generalized average Reynolds equation governing the turbulent flow of lubricant is analyzed by considering the interaction of bearing elastic deformation, asperity contact pressure and film pressure. The bearing behaviors including minimum film thickness, hydrodynamic pressure, asperity friction force and frictional coefficient are studied under different models. The correctness of this model is verified by comparing it with that of the published data.

Findings

Numerical results indicate that elastic deformation noticeably decreases the maximum film pressure, the asperity contact force and the friction coefficient in the mixed lubrication stage. The effect of elastic deformation and turbulence reduces the transition speed from mixed to liquid lubrication.

Originality/value

This model includes both turbulence and bearing deformation impacts on journal bearing performances. It is expected that the numerical results can provide useful information to establish a stern bearing exposed to mixed lubrication conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2022-0352/

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2022

Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Abstract

Purpose

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Design/methodology/approach

The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.

Findings

Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.

Practical implications

This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.

Originality/value

Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 March 2015

Lidui Wei, Haijun Wei, Shulin Duan and Yu Zhang

The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service…

1044

Abstract

Purpose

The purpose of this paper is to develop a good calculation model to accurately predict the lubrication characteristic of main bearings of diesel engine and improve the service life.

Design/methodology/approach

Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the Component Mode Synthesis (CMS) method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an elastohydrodynamic (EHD)-mixed lubrication model of the main bearings for the diesel engine is developed and researched with the finite volume method and the finite element method.

Findings

Obviously, the mixed lubrication of bearings is normal, while full hydrodynamic lubrication is transient. The results show that under the whole flexible block model, maximum oil film pressure, maximum asperity contact pressure and radial shell deformation decrease, while minimum oil film thickness increases. Oil flow over edge decreases, and so does friction loss. Therefore, coordination deformation ability of whole engine block is favorable to mean load. In the whole block model, friction contact happens on both upper shell and lower shell positions. In addition, average oil film fill ratio at the key position becomes smaller in the whole engine block model, and consequently increases the chances of cavitations erosion more. So, wearing resistance of both upper and lower shells and anti-cavitations erosion ability must be enhanced simultaneously.

Originality/value

Based on the coupling of the whole flexible engine block and the flexible crankshaft reduced by the CMS method, considering mass-conserving boundary conditions, the average flow model equation and Greenwood/Tripp asperity contact theory, an EHD-mixed lubrication model of the main bearings for the diesel engine is built, which can predict the lubrication of journal bearings more accurately.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Hui Zhang, Guangneng Dong and Guozhong Dong

The main purpose of this paper is to present the effort on developing a mixed elastohydrodynamic lubrication (EHL) model to study the tribological effect of asperities on rough…

Abstract

Purpose

The main purpose of this paper is to present the effort on developing a mixed elastohydrodynamic lubrication (EHL) model to study the tribological effect of asperities on rough surface.

Design/methodology/approach

The model, with the use of the average flow Reynolds equation and the K-E elasto-plastic contact model, allows predictions of hydrodynamic pressure and contact pressure on the virtual rough surface, respectively. Then, the substrate elastic deformation is calculated by discrete convolution fast-Fourier transform (DC-FFT) method to modify the film thickness recursively. Afterwards, corresponding ball-on-disk tests are conducted and the validity of the model demonstrated. Moreover, the effects of asperity features, such as roughness, curvature radius and asperity pattern factor, on the tribological properties of EHL, are also discussed though plotting corresponding Stribeck curves and film thickness shapes.

Findings

It is demonstrated that the current model predicts very close data compared with corresponding experimental results. And it has the advantage of high accuracy comparing with other typical models. Furthermore, smaller roughness, bigger asperity radius and transverse rough surface pattern are found to have lower friction coefficients in mixed EHL models.

Originality/value

This paper contributes toward developing a mixed EHL model to investigate the effect of surface roughness, which may be helpful to better understand partial EHL.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 September 2023

Deepak Kumar Prajapati, Jitendra Kumar Katiyar and Chander Prakash

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough…

Abstract

Purpose

This study aims to use a machine learning (ML) model for the prediction of traction coefficient and asperity load ratio for different surface topographies of non-conformal rough contacts.

Design/methodology/approach

The input data set for the ML model is generated using a mixed-lubrication model. Surface topography parameters (skewness, kurtosis and pattern ratio), rolling speed and hardness are used as input features in the multi-layer perceptron (MLP) model. The hyperparameter tuning and fivefold cross-validation are also performed to minimize the overfitting.

Findings

From the results, it is shown that the MLP model shows excellent accuracy (R2 > 90%) on the test data set for making the prediction of mixed lubrication parameters. It is also observed that engineered rough surfaces with high negative skewness, low kurtosis and isotropic surface patterns exhibit a significant low traction coefficient. It is also concluded that the MLP model gives better accuracy in comparison to the random forest regression model based on the training and testing data sets.

Originality/value

Mixed lubrication parameters are predicted by developing a regression-based MLP model. The machine learning model is trained using several topography parameters, which are vital in the mixed-EHL regime because of the lack of regression-fit expressions in previous works. The accuracy of MLP with random forest models is also compared.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 February 2022

Haiming Dai, Guo Xiang, Jiaxu Wang, Juan Guo, Cheng Wang and Hang Jia

The purpose of this study is to numerically investigate the time-varying mixed lubrication performance of microgroove journal-thrust coupled bearing (MJTCB) under nonlinear…

Abstract

Purpose

The purpose of this study is to numerically investigate the time-varying mixed lubrication performance of microgroove journal-thrust coupled bearing (MJTCB) under nonlinear excitation.

Design/methodology/approach

A three degree of freedom (3-DOF) dynamic model of the rotor coupling with the transient mixed lubrication behavior is established. Based on numerical predictions, the role of the microgroove on the time-varying mixed lubrication performance of MJTCB is identified. The effects of the microgroove depth, microgroove shape and external load on the time-varying mixed lubrication performance of MJTCB are also studied.

Findings

Numerical results show that the effect of the coupling hydrodynamic on the time-varying mixed lubrication performance of the coupled bearing is strengthen with the increasing of microgroove depth. Furthermore, it is found that the optimal microgroove shape for the thrust bearing, arc or rectangle, highly depends on the microgroove depth. Finally, the contact performance of the thrust bearing is slightly affected by the radial external load.

Originality/value

This study is expected to achieve a better understanding of the time-varying mixed lubrication performance of MJTCB under nonlinear excitations.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 August 2019

Guo Xiang Guo Xiang, Yanfeng Han, Renxiang Chen, Jiaxu Wang Jiaxu Wang and Ni Xiaokang

This paper aims to present a numerical model to investigate the mixed lubrication performances of journal-thrust coupled bearings (or coupled bearings).

Abstract

Purpose

This paper aims to present a numerical model to investigate the mixed lubrication performances of journal-thrust coupled bearings (or coupled bearings).

Design/methodology/approach

The coupled hydrodynamic effect (or coupled effect) between the journal and the thrust bearing is considered by ensuring the continuity of the hydrodynamic pressure and the flow field at the common boundary. The mixed lubrication performances of the coupled bearing are comparatively studied for the cases of considering and not considering coupled effect.

Findings

The simulated results show that the hydrodynamic pressure distributions for both the journal and thrust bearing are modified due to the coupled effect. The decreased load capacity of the journal bearing and the increased load capacity of the thrust bearing can be observed when the coupled effect is considered. And the coupled effect can facilitate in reducing the asperity contact load for both the journal and thrust bearing. Additionally, the interaction between the mixed lubrication behaviors, especially for the friction coefficient, of the journal and the thrust bearing is significant in the elastohydrodynamic lubrication regime, while it becomes weak in the mixed lubrication regime.

Originality/value

The developed model can reveal the mutual effects of the mixed lubrication behavior between the journal and the thrust bearing.

Details

Industrial Lubrication and Tribology, vol. 71 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000