Search results

1 – 10 of 60
Open Access
Article
Publication date: 16 March 2020

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

3466

Abstract

Purpose

The purpose of this paper is to exploit a database of pre-existing designs to accelerate parametric optimization of antenna structures is investigated.

Design/methodology/approach

The usefulness of pre-existing designs for rapid design of antennas is investigated. The proposed approach exploits the database existing antenna base designs to determine a good starting point for structure optimization and its response sensitivities. The considered method is suitable for handling computationally expensive models, which are evaluated using full-wave electromagnetic (EM) simulations. Numerical case studies are provided demonstrating the feasibility of the framework for the design of real-world structures.

Findings

The use of pre-existing designs enables rapid identification of a good starting point for antenna optimization and speeds-up estimation of the structure response sensitivities. The base designs can be arranged into subsets (simplexes) in the objective space and used to represent the target vector, i.e. the starting point for structure design. The base closest base point w.r.t. the initial design can be used to initialize Jacobian for local optimization. Moreover, local optimization costs can be reduced through the use of Broyden formula for Jacobian updates in consecutive iterations.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the acceleration of antenna optimization. The proposed technique enables the identification of a good starting point and reduces the number of expensive EM simulations required to obtain the final design.

Originality/value

The proposed design framework proved to be useful for the identification of good initial design and rapid optimization of modern antennas. Identification of the starting point for the design of such structures is extremely challenging when using conventional methods involving parametric studies or repetitive local optimizations. The presented methodology proved to be a useful design and geometry scaling tool when previously obtained designs are available for the same antenna structure.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 28 August 2021

Slawomir Koziel and Anna Pietrenko-Dabrowska

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three…

Abstract

Purpose

A novel framework for expedited antenna optimization with an iterative prediction-correction scheme is proposed. The methodology is comprehensively validated using three real-world antenna structures: narrow-band, dual-band and wideband, optimized under various design scenarios.

Design/methodology/approach

The keystone of the proposed approach is to reuse designs pre-optimized for various sets of performance specifications and to encode them into metamodels that render good initial designs, as well as an initial estimate of the antenna response sensitivities. Subsequent design refinement is realized using an iterative prediction-correction loop accommodating the discrepancies between the actual and target design specifications.

Findings

The presented framework is capable of yielding optimized antenna designs at the cost of just a few full-wave electromagnetic simulations. The practical importance of the iterative correction procedure has been corroborated by benchmarking against gradient-only refinement. It has been found that the incorporation of problem-specific knowledge into the optimization framework greatly facilitates parameter adjustment and improves its reliability.

Research limitations/implications

The proposed approach can be a viable tool for antenna optimization whenever a certain number of previously obtained designs are available or the designer finds the initial effort of their gathering justifiable by intended re-use of the procedure. The future work will incorporate response features technology for improving the accuracy of the initial approximation of antenna response sensitivities.

Originality/value

The proposed optimization framework has been proved to be a viable tool for cost-efficient and reliable antenna optimization. To the knowledge, this approach to antenna optimization goes beyond the capabilities of available methods, especially in terms of efficient utilization of the existing knowledge, thus enabling reliable parameter tuning over broad ranges of both operating conditions and material parameters of the structure of interest.

Details

Engineering Computations, vol. 38 no. 10
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 10 January 2020

Slawomir Koziel and Anna Pietrenko-Dabrowska

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is…

Abstract

Purpose

This study aims to propose a computationally efficient framework for multi-objective optimization (MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.

Design/methodology/approach

The keystone of the proposed approach is the usage of recently introduced nested kriging modeling for identifying the design space region containing the Pareto front and constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.

Findings

The optimization cost is dramatically reduced for the proposed framework as compared to other state-of-the-art frameworks. The initial Pareto set is identified more precisely (its span is wider and of better quality), which is a result of a considerably smaller domain of the nested kriging model and better predictive power of the surrogate.

Research limitations/implications

The proposed technique can be generalized to accommodate low- and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-fidelity simulations to further reduce the cost of the training data acquisition.

Originality/value

The fast MO optimization procedure with the use of the nested kriging modeling technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 3 May 2021

Habeeba Khan, Sayyed Arif Ali, Mohd Wajid and Muhammad Shah Alam

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a…

2575

Abstract

Purpose

In this work, a microstrip antenna array for wireless power transfer (WPT) application is reported. The proposed 4 × 4 antenna array operating at 16 GHz is designed using a flexible Kapton polyimide substrate for a far-field charging unit (FFCU).

Design/methodology/approach

The proposed antenna is designed using the transmission line model on a flexible Kapton polyimide substrate. The finite element method (FEM) is used to perform the full-wave electromagnetic analysis of the proposed design.

Findings

The antenna offers −10 dB bandwidth of 240 MHz with beam width and broadside gain found to be 29.4° and 16.38 dB, respectively. Also, a very low cross-polarization level of −34.23 dB is achieved with a radiation efficiency of 36.67%. The array is capable of scanning −15° to +15° in both the elevation and azimuth planes.

Originality/value

The radiation characteristics achieved suggest that the flexible substrate antenna is suitable for wireless charging purposes.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 19 March 2020

Laura Jasińska, Krzysztof Szostak, Milena Kiliszkiewicz, Piotr Słobodzian and Karol Malecha

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with…

2389

Abstract

Purpose

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with microfluidic channels for sensor applications. Normally, conductive patterns are deposited on an LTCC substrate by means of the screen-printing technique, but in this paper applicability of ink-jet printing in connection with LTCC materials is demonstrated.

Design/methodology/approach

A simple microfluidic LTCC sensor based on the microstrip ring resonator was designed. It was assumed the micro-channel, located under the ring, was filled with a mixture of DI water and ethanol, and the operating frequency of the resonator was tuned to 2.4 GHz. The substrate was fabricated by standard LTCC process, and the pattern of the microstrip ring resonator was deposited over the substrate by means of an ink-jet printer. Performance of the sensor was assessed with the use of various volumetric concentrations of DI water and ethanol. Actual changes in concentration were detected by means of microwave measurements.

Findings

It can be concluded that ink-jet printing is a feasible technique for fast fabrication of micro-strip circuits on LTCC substrates, including microfluidic components. Further research needs to be conducted to improve the reliability, accuracy and performance of this technique.

Originality/value

The literature shows the use of ink-jet printing for producing various conductive patterns in different applications. However, the idea to replace the screen-printing with the ink-jet printing on LTCC substrates in connection with microwave-microfluidic applications is not widely studied. Some questions concerning accuracy and reliability of this technique are still open.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Content available
Article
Publication date: 1 May 2006

Pete Starkey

40

Abstract

Details

Circuit World, vol. 32 no. 2
Type: Research Article
ISSN: 0305-6120

Content available
266

Abstract

Details

Soldering & Surface Mount Technology, vol. 17 no. 2
Type: Research Article
ISSN: 0954-0911

Content available
147

Abstract

Details

Microelectronics International, vol. 22 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Content available

Abstract

Details

Circuit World, vol. 40 no. 1
Type: Research Article
ISSN: 0305-6120

Content available

Abstract

Details

Soldering & Surface Mount Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0954-0911

1 – 10 of 60