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Abstract
Purpose – This study aims to propose a computationally efficient framework for multi-objective optimization
(MO) of antennas involving nested kriging modeling technology. The technique is demonstrated through a two-
objective optimization of a planar Yagi antenna and three-objective design of a compact wideband antenna.
Design/methodology/approach – The keystone of the proposed approach is the usage of recently
introduced nested kriging modeling for identifying the design space region containing the Pareto front and
constructing fast surrogate model for the MO algorithm. Surrogate-assisted design refinement is applied to
improve the accuracy of Pareto set determination. Consequently, the Pareto set is obtained cost-efficiently, even
though the optimization process uses solely high-fidelity electromagnetic (EM) analysis.
Findings – The optimization cost is dramatically reduced for the proposed framework as compared to other state-
of-the-art frameworks. The initial Pareto set is identifiedmore precisely (its span iswider and of better quality), which
is a result of a considerably smaller domain of the nested krigingmodel and better predictive power of the surrogate.
Research limitations/implications – The proposed technique can be generalized to accommodate low-
and high-fidelity EM simulations in a straightforward manner. The future work will incorporate variable-
fidelity simulations to further reduce the cost of the training data acquisition.
Originality/value – The fast MO optimization procedure with the use of the nested kriging modeling
technology for approximation of the Pareto set has been proposed and its superiority over state-of-the-art
surrogate-assisted procedures has been proved. To the best of the authors’ knowledge, this approach to multi-
objective antenna optimization is novel and enables obtaining optimal designs cost-effectively even in
relatively high-dimensional spaces (considering typical antenna design setups) within wide parameter ranges.
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1. Introduction
Performance requirements imposed on contemporary antenna systems are multifold and
pertinent to both electrical and field characteristics (Stutzman and Thiele, 2012), multi-band
and multi-functional operation (Borhani et al., 2016; Soltani et al., 2017), as well as
geometrical constraints (primarily compact size, Bhattacharya et al., 2016). The need for
fulfilling stringent specifications necessitates the development of antennas that feature more
and more complex geometries and are described by a large number of variables (Matekovits
et al., 2007; Szini et al., 2015; Buckley et al., 2016). Both factors create the need for handling/
optimizing several design objectives at the same time while operating within parameter
spaces of ever-increasing number of dimensions. Usage of full-wave electromagnetic (EM)
simulation tools, computationally expensive but mandatory to ensure sufficient evaluation
reliability, is yet another design challenge. Many of the design objectives are at least
partially conflicting, i.e. improvement of one implies certain degradation of others. Perhaps
the most recognized example is antenna miniaturization: reduction of the size normally leads
to problems with ensuring sufficient impedance matching as well as affects other
characteristics, such as efficiency or pattern stability (Liu et al., 2014; Koziel et al., 2018).
Consequently, any practical design must be a compromise (or trade-off) between the
objectives of interest.

The most reliable way of handling multiple goals (as well as just one objective for that
matter) is numerical optimization (Deb and Gupta, 2006). Majority of practically used
algorithms are single-objective routines (Tian et al., 2010; Koziel and Ogurtsov, 2014). These,
however, require a scalar cost function. To control several design goals, some sort of
aggregation (e.g. using a weighted sum approach) or constrained optimization with
acceptance levels set for all but the primary objective, need to be performed. In either case,
the outcome is a single design that qualitatively (but not necessarily quantitatively)
represents the designer’s preferences about the goals. On the other hand, genuine multi-
objective optimization (MO) procedures are capable of identifying the entire set of trade-off
designs (the Pareto set, Koziel and Bekasiewicz, 2016). The most popular class of MO
algorithms involve population-based metaheuristics (Darvish and Ebrahimzadeh, 2018;
Goudos et al., 2011; Bauernfeind et al., 2017; Jayaprakasam et al., 2014; Aravanis et al., 2015;
Rinaldo et al., 2005), which exhibit global search capabilities (important in some cases), but
come at the expense of a tremendous computational cost (Easum et al., 2018; Nagar and
Werner, 2018). The latter is normally unmanageable if the antenna performance is evaluated
through EM simulation. A new approach to expedited global design optimization of
antennas with evolutionary algorithm by means of small-scale parallelizing computations
has been reported recently (Akinsolu et al., 2019; Liu et al., 2018), yet the method has been
applied to single-objective optimization problems only.

It seems that the usage of surrogate models is currently the most promising approach to
render EM-driven MO procedures computationally feasible (Koziel and Bekasiewicz, 2016).
In relatively simple cases (in terms of the parameter space dimensionality), construction of
global surrogates may be sufficient (Chen, 2015; de Villiers et al., 2017; Easum et al., 2017).
For other situations (>10 geometry parameters) more needs to be done. Some of the recently
proposed techniques (Koziel and Ogurtsov, 2013; Koziel et al., 2014a), suggest usage of
variable-fidelity EM simulations along with the initial design space reduction. The latter
aims at identifying the region of the parameter space that contains the Pareto front and at
constructing the surrogate therein. This has been demonstrated to yield considerable
computational savings even though the applied space reduction methods only give a very
rough estimation of the Pareto front geometry.
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In this paper, a novel multi-optimization framework is proposed for a cost-efficient EM-
driven antenna design. Our methodology adopts a recently reported nested kriging
surrogate modeling technique (Koziel and Pietrenko-Dabrowska, 2019). The technique uses
two kriging surrogates. The first-level model is used to define the domain of the surrogate,
containing the designs that are of high quality from the point of view of the performance
figures relevant to the considered system. The second-level model, set up in that domain, is
the actual surrogate representing the system outputs. The fundamental benefit of
constraining the surrogate domain is a notable reduction of the required training data set as
compared to the traditional kriging approach over a box-constrained domain. Here, nested
kriging methodology is used to identify the parameter space region containing the Pareto set
(design space reduction) as well as to construct the surrogate that allows us to produce the
initial approximation of the trade-off designs through metaheuristic optimization. Because
of a good precision of representing the Pareto front geometry by the nested kriging
framework, the MO process can be executed in a computationally efficient manner despite
merely using high-fidelity EM simulations of the antenna at hand. For the sake of
demonstration, two structures are optimized, a planar Yagi antenna (for best matching and
maximum gain) and a wideband monopole (for best matching, minimum gain variability
andminimum size). In both cases, the Pareto set is obtained at the cost of only a few hundred
of EM simulations, which is almost 80 per cent less than for the surrogate-assisted
framework involving a simpler design space reduction technique.

To the best of the authors’ knowledge, this paper is the first attempt to use the nested
kriging method for MO. The major novelty is in adopting the nested kriging technique for
design space confinement and providing a fast surrogate for low-cost generation of the
initial Pareto set. For that purpose, a rigorous mathematical formalism is developed in
Section 2.4, which permits the establishment of the surrogate in an arbitrary subset of the
objective space instead of the box-constrained space as in Koziel and Pietrenko-Dabrowska
(2019). The presented methodology is demonstrated to efficiently solve MO of real-world
antenna design tasks. In addition, its superiority over state-of-the-art surrogate-assisted
procedures is validated. The proposed method is generic in the sense of its capability of
handling any number of design objectives.

2. Antenna optimization with multiple objectives aided by nested kriging
surrogates
This section provides a necessary background material concerning MO by means of
surrogate modeling. It also briefly recalls the concept of nested kriging, as well as describes
how to incorporate it into the multi-objective design framework. The main goal is the
reduction of the computational overhead of multi-objective design beyond what is offered by
the existing approaches.

2.1 Multi-objective optimization using surrogate models
For the purpose of further considerations, the design objectives will be denoted as Fk, k = 1,
. . ., Nobj, where Nobj stands for the overall number of the goals. MO aims at finding a Pareto
set of designs that are globally non-dominated (Deb, 2001). A design is globally non-
dominated – within the considered parameter space – if there is no other design
simultaneously better with respect to all objectives. The Pareto set represents the best
possible trade-offs with respect to [F1 F2 . . . FNobj].

The antenna under design is evaluated using EM analysis and the respective
computational model is denoted as R(x), where x is a vector of adjustable (typically,
geometry) parameters. As explained in Section 1, it is impractical or even infeasible to carry
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out MO directly on R when using population-based metaheuristics. According to the recent
literature (de Villiers et al., 2017; Easum et al., 2017; Koziel and Ogurtsov, 2013; Koziel et al.,
2014a), the most promising way of speeding up the optimization process is the usage of an
auxiliary surrogate modelRs (a faster representation of the antenna at hand). In most cases,
the surrogate is an approximation model, typically a kriging (An et al., 2018) or Gaussian
process regression one (Lyu et al., 2018). Other approximation methods may also be used, e.
g. artificial neural networks (ANNs; Mishra et al., 2015) or support vector regression (SVR;
Jacobs, 2012). A particular selection of the modeling framework is generally of secondary
importance, although particular techniques may suffer from certain issues. For example, the
generalization ability of ANNs, i.e. the predictive power over the points outside the training
set, may proof deficient (Chauhan et al., 2012). Handling this issue generally requires
appropriate adjustment of the network architecture (Na et al., 2017). On the other hand,
SVR’s generalization capabilities are superior over ANNs. Yet, developing effective antenna
models using SVM is not a straightforward process, and the researchers have to use their
domain expertise in it (Chauhan et al., 2012). Regardless of the approximation technique
used, the surrogate can be optimized directly using, e.g. a multi-objective evolutionary
algorithm (MOEA; Fonseca, 1995).

Further acceleration can be achieved by exploiting variable-fidelity EM simulations.
This sort of approach has been adopted in Koziel and Ogurtsov (2013) and Koziel et al.
(2014a), where the surrogate was constructed at the level of coarse-discretization EMmodel.
Unfortunately, a refinement process is required to accommodate the discrepancies between
the low- and high-fidelity simulations. In Koziel and Ogurtsov (2013), a simple response
correction in the form of output space mapping (Koziel et al., 2008) has been used. The high-
fidelity Pareto designs have been obtained through the following refinement of the selected
low-fidelity Pareto-optimal designs xs

(k):

x kð Þ
f ¼ arg min

x; F2 xð Þ#F2 x kð Þ
s

� �
..
.

FNobj xð Þ#FNobj x kð Þ
s

� �

F1 Rs xð Þ þ R x kð Þ
s

� �
�Rs x kð Þ

s

� �h i� �
(1)

The correction term R(xs
(k)) � Rs(xs

(k)) ensures perfect alignment between the surrogate Rs
and the high-fidelity model at xs

(k) (Koziel and Ogurtsov, 2013). In Koziel et al. (2014b), an
alternative refinement procedure based on co-kriging has been proposed.

2.2 Reduction of parameter ranges
The fundamental difficulty concerning the surrogate-assisted MO, as described in Section
2.1, is a construction of the surrogate model itself. Apart from low-dimensional cases (up to a
few parameters), it is simply not possible to build the model in the entire design space. The
reasons include the lack of prior knowledge about the Pareto front location (which implies
wide parameter ranges), and the curse of dimensionality. Both issues lead to excessive costs
of training data acquisition.

The design space can be reduced in a reasonable manner by considering the single-
objective optima x*(k) = argmin{x: Fk(R(x))}, i.e. the extreme Pareto-optimal designs that
determine the span of the Pareto front. Thus, the lower and upper bounds for the antenna
parameters can be set as l* = min{x*(1),. . ., x*(Nobj)} and u* = max{x*(1),. . ., x*(Nobj)} (Koziel
and Ogurtsov, 2013). Apart from some “pathological” cases, the interval [l*,u*] contains the
vast majority of the Pareto front. A better idea about the Pareto front geometry can be
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acquired using more involved methods such as the rotational space reduction (Koziel and
Bekasiewicz, 2015), which is, however, applicable to two-objective problems only.

2.3 Surrogate modeling using nested kriging
This work aims at the development of an improved surrogate-assisted MO procedure, which
permits further computational savings over the framework described in Sections 2.1 and 2.2.
To this end, we adopt a recently reported nested kriging modeling (Koziel and Pietrenko-
Dabrowska, 2019). It is used to implement a more efficient design space reduction scheme
and to construct the surrogate model for initial Pareto set identification. The term “nested”
refers to performing kriging interpolation consecutively twice: first to identify the surrogate
model domain, then to establish the actual surrogate model itself in the constrained domain.
The difference between the nested and traditional kriging is that the latter operates in an
interval-like domain, defined by lower and upper parameter bounds. Because of complex
interactions between geometry parameters, designs that are optimal with respect to the
performance figures are focused within small subsets of such a domain (Koziel and
Sigurdsson, 2017). Thus, constraining the surrogate model domain with the nested kriging,
leads to significant cost savings. In this section, we briefly recall the nested modeling
concept, whereas its adaptation for MO purposes is explained in Section 2.4.

The figures of interest selected for the design process (e.g. operating frequency,
bandwidth and maximum/average in-band gain) are denoted by fk, k = 1, . . ., N. These are
identical to the MO design goals Fk of Section 2.1. The foundation of the nested kriging are
the reference designs x(j) = [x1

(j) . . . xn
(j)]T, j = 1, . . ., p, optimized with respect to the

performance vectors f (j) = [f1
(j) . . . fN

(j)]. The vectors f (j) are allocated within the
objective space F defined using the ranges fk.min # fk

(j) # fk.max, k = 1, . . ., N, to be covered
by the surrogate model (Koziel and Pietrenko-Dabrowska, 2019). Clearly, the coverage of the
objective space should be possibly uniform. Typically, the number of the reference designs
is small, e.g. around 10 or so (Koziel and Pietrenko-Dabrowska, 2019) because the
dimensionality of F is low.

The modeling procedure involves two surrogates. The first-level model sI(f) maps F into
the design space X. The model sI interpolates the training data set {f (j), x(j)} using kriging
(Simpson et al., 2001) (Figure 1). The image of F through sI, sI(F) � X, provides the first
approximation of the surrogate model domain. This is the best information available from
the reference points about the designs optimal with respect to f [ F. Yet, this information is
limited, and sI(F) needs to be orthogonally extended toward its normal vectors to ensure that
all of the optimum designs are enclosed in the model domain. The normal extension vectors
are denoted as vn

(k)(f ), k = 1, . . ., n�N, and they are the functions of the performance vector
f (Koziel and Pietrenko-Dabrowska, 2019). Let us also define: xmax = max{x(k), k = 1, . . ., p},
xmin =min{x(k), k= 1, . . ., p}, xd= xmax� xmin, as well as the extension coefficients:

a fð Þ ¼ a1 fð Þ . . . an�N fð Þ� �T ¼ D
2

jxdv 1ð Þ
n fð Þj . . . jxdv n�Nð Þ

n fð Þj
h iT

(2)

where D is a user-defined thickness parameter determining the orthogonal extension. It has
been shown in Koziel and Pietrenko-Dabrowska (2019), that the value of D affects the model
accuracy to a certain extent; however, the predictive power dependence on D is not
significant.

The model domain XS is defined by the coefficients ak, and it is located between the
surfaces (or manifolds)Mþ andM– [Figure 1(b)]:
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M6 ¼ x 2 X : x ¼ sI fð Þ6
Xn�N

k¼1
ak fð Þv kð Þ

n fð Þ
n o

(3)

The surrogate model domain is then given as:

XS ¼ x ¼ sI fð Þ þ
Xn�N

k¼1
lkak fð Þv kð Þ

n fð Þ : f 2 F;
� 1#l k# 1; k ¼ 1; . . . ; n� N

( )
(4)

The final (second-level) kriging surrogate is subsequently established within XS with the
training data set {xB

(k),R(xB
(k))}k = 1, . . ., NB.

It should be noted that the above definition of the model domain permits straightforward
realization of uniform sampling within XS. This is of fundamental importance for ensuring
the best possible predictive power of the surrogate.

The exposition of the nested kriging modeling provided in this section is necessarily brief
and only covers the aspects relevant to this work. More details can be found in Koziel and
Pietrenko-Dabrowska (2019).

2.4 Nested kriging for multi-objective design framework
The major contributor to the computational cost of the surrogate-assisted framework of
Section 2.1 is the acquisition of the training data for surrogate model construction (Koziel
et al., 2014a). It might be responsible for as much as 80 per cent of the overall cost, which
creates a room for improvements. In this work, we use the nested kriging approach outlined
in Section 2.3 to implement a more efficient design space reduction (as compared to that of
Section 2.2), but also to construct the surrogate model itself. The primary challenge of
applying the nested kriging technique for MO is that the objective space constitutes merely
a small part of an interval, e.g. a one-dimensional object (curve) in the case of Nobj = 2, or a
fragment of a two-dimensional surface in the case of Nobj = 3. This section explains how the
technique can be adopted for our purposes while retaining its fundamental advantages
mentioned in Section 2.3.

Figure 1.
Graphical illustration
of the main
components of the
nested kriging
modeling, here,
explained for a two-
dimensional objective
space and three-
dimensional
parameter space

f2

f1

f2.max

f2.min

f1.maxf1.min

F

f (k)

x1

M+

S

MMMM+MM

x3

x2

sI(F)

sI(f(k))

M–

(a) (b)

Notes: (a) Reference designs and objective space F; (b) the image sI(F) of the first-level
surrogate model and the normal vector v1

(k) at f(k); the manifolds M– and M+ as well as the
surrogate model domain XS defined as the orthogonal extension of sI(F)
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In the context of MO, the figures of interest fk of the nested model are identical with the
design objectives Fk of Section 2.1, and, consequently, N = Nobj. For “general” modeling, the
reference designs were to be uniformly distributed within the interval-like objective space F.
For the purpose of MO, they need to account for the Pareto front geometry (include the
extreme designs x*(k) = argmin{x: Fk(R(x))} and additional designs if more detailed
information is desired, e.g. the front curvature). Let us define Fk = [F1(x

*(k)) . . . FN(x
*(k))]T,

k= 1, . . .,N. The generic way of obtaining the reference designs is to solve:

xw ¼ argmin
x

F1 R xð Þð Þ (5)

under the constraints:

Fj xð Þ#
XN
l¼1

wlFj x* lð Þ
� �

; j ¼ 2; . . . ;N (6)

wherew= [w1 . . . wN]
T is a vector of weights representing a convex combination, i.e.:

0#wj# 1 and
XN

j¼1
wj ¼ 1 (7)

Note that the extreme Pareto-optimal designs x*(k) correspond to the weighting vectors w =
[0 . . . 1 . . . 0]Twith 1 on the kth position. Other arrangements would distribute the reference
designs along the Pareto front; for examplew = [1/N 1/N . . . 1/N]T corresponds to the front
center. Below,F(w) refers to the objective vector corresponding to the reference design xw.

Let us now establish a mapping between the weighting vectors w [specifically, those
satisfying equation (7)] and the part of the objective space corresponding to the Pareto front.
First, for constructing the surrogate model and allocation of the training data, it is
convenient to use an auxiliary transformation from a unit N � 1 simplex SN�1 onto the
space of the weightsw, defined as:

h0 zð Þ ¼
1
0
..
.

0

2
6664

3
7775þ

�1 �1 � � � �1
1 0 � � � 0
0 1 � � � 0
..
. ..

. . .
. ..

.

0 0 � � � 1

2
666664

3
777775 � z (8)

where

SN�1 ¼ z ¼ z1 . . . zN�1½ �T : 0# zk# 1 and
XN�1

k¼1
zk# 1

n o
(9)

Figure 2 shows some illustrative examples of these concepts for the two- and three-
objective cases. The thick dotted lines indicate the parts of the objective spaces where
the nested kriging model is to be established. A certain extension is necessary to
accommodate the fact that only a rough approximation of the Pareto front geometry is
given by the available reference designs, the number of which is very limited in
practice. The extended region O (the actual domain of the first-level surrogate) is
defined as the set of all points of the form:
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w ¼ h0 zð Þ � 1þ dð Þ with z 2 SN�1 and � dw#d# dw (10)

where dw is the extension factor (here, we use dw= 0.05).
The first-level surrogate for MO is established using the reference designs. It is a

composition of two transformations:
(1) the mapping from the Cartesian product of SN�1 � [�dw, dw] onto the objective

space region O; and
(2) the “conventional” first-level model sI of Section 2.3 from O into X.

The former transformation is merely used for the sake of convenience: it is easier to
implement uniform data sampling on SN�1� [�dw, dw] rather than directly withinO.

The second-level surrogate is subsequently set up in the domain constructed as in
Section 2.3 but with sI(O) being orthogonally extended instead of sI(F). It should be
emphasized that the Pareto front geometry is accurately identified through the variation of
the nested modeling technique introduced in this section. The number of reference designs
required for obtaining a reasonable Pareto front representation is up to three or four for
Nobj = 2 [cf. Figure 2(a)], and up to six or seven for Nobj = 3 [cf. Figure 2(b)]. Clearly,
identification of the reference designs incurs certain computational expenses. However, the
cost of finding additional reference designs (other than the extreme ones) is usually low
because good initial points for finding xw can be established as:

xw 0ð Þ ¼
XN
l¼1

wlx* lð Þ (11)

where x*(l), l = 1, . . ., N, are, as before, the extreme design corresponding to w = [0 . . . 1 . . .
0]Twith 1 on the lth position.

Figure 3 shows the flow diagram of the nested surrogate modeling process for MO.
According to the surrogate-assisted procedure of Section 2.1, the second-level model is
optimized using MOEA to yield the initial Pareto set, further refined using equation (1).
Here, only high-fidelity EM simulations are used to proof the computational efficiency of the
proposed methodology even without the usage of variable-fidelity simulations.

Figure 2.
Conceptual
illustration of the
objective space and
the objective vectors
corresponding to
selected reference
designs as well as the
objective space
regions (marked
using dotted lines)
where the nested
kriging model is to be
constructed

F1

F2

S1 F1 = F([1 0]T)

1

0

F2 = F([0 1]T)

F([0.7 0.3]T)
F([0.3 0.7]T)

F

h0

1

1

F2

F1

F3 F1 = F([1 0 0]T)

F3 = F([0 0 1]T)

F2 = F([0 1 0]T)

F([0.5 0.5 0]T)

F([0 0.5 0.5]T)

F([0.5 0 0.5]T)S2

0

F

h0

(a) (b)

Notes: The mapping h0 from the unity simplex onto the objective space region is also shown:
(a) two-objective case; (b) three-objective case
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A few comments should be made about the surrogate model optimization. Formally, the
surrogate is optimized in the original domain of the first-level surrogate, that is, SN�1 �
[�dw, dw]. For the sake of antenna evaluation, the designs y [ SN–1 � [�dw, dw] are
transformed into the weight vectors w using equation (10), and then into x [ X using the sI.
This permits us to operate within a geometrically simple domain defined by the lower/upper
bounds 0# yk # 1, k = 1, . . ., N � 1, �dw # yN # dw, and a linear constraint

P
k = 1,. . .,N�1

yk # 1, despite the actual shape of the Pareto front. The process of surrogate model
evaluation has been shown in Figure 4.

3. Application case studies
The MO framework proposed in this paper is demonstrated here using two examples, a planar
Yagi antenna and an ultra-wideband monopole antenna. For the first example, there are two
objectives considered: improvement of the in-band matching and gain maximization. For the
second example, we have three goals: improvement of the impedance matching, reduction of
the in-band gain variability and reduction of the antenna size. Our framework is compared to
the benchmark surrogate-assistedMO algorithm of Sections 2.1 and 2.2.

It should be noted that only high-fidelity EM simulations are used, therefore a direct
comparison with variable-fidelity frameworks is not possible, although the proposed
technique can be generalized to accommodate low- and high-fidelity EM simulations in a
straightforwardmanner.

3.1 Case 1: planar Yagi antenna
The first demonstration example is a planar Yagi antenna shown in Figure 5 (Kaneda et al.,
2002). The structure is implemented on RT6010 substrate (« r = 10.2, h = 0.635mm) and
comprises a driven element fed by a coplanar strip-line, director and a microstrip balun. The
antenna is fed with a 50 ohmmicrostrip. Design variables are x= [s1 s2 v1 v2 u1 u2 u3 u4]

T. Other

Figure 3.
Flow diagram of the

nested surrogate
modeling process for

MO

EM solver

Generate reference 
designs

Define first-level 
surrogate domain

Identify first-level 
surrogate

Define second-level 
surrogate domain

Design of Experiments

Acquire training data

Identify second-level 
surrogate

esigns

fiff
ate do

fiff t
rogat

ate do

D
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parameters are fixed as follows:w1 = w3 =w4 = 0.6,w2 = 1.2, u5 = 1.5, s3 = 3.0 and v3 = 17.5, all
in mm. The computational model R is simulated in CST Microwave Studio (approximately
600,000mesh cells and simulation time of 4min) using its time domain solver.

The antenna is supposed to operate within the frequency range 10-11GHz. The figures of
interest are minimization of in-band reflection (F1) and maximization of the average end-fire
gain (F2), both within the operating bandwidth.

To set up the surrogate model we use four reference designs, corresponding to the two
extreme designs x*(1) = [4.43 3.85 8.77 4.28 4.09 4.76 2.08 1.63]T, x*(2) = [5.19 6.90 7.10 5.08
3.54 4.78 2.23 0.93]T, and two more, corresponding to z = 0.33 and z = 0.66 (cf. (6)): x*(3) =
[4.56 4.38 8.56 4.50 3.89 4.93 2.01 1.57]T and x*(4) = [4.84 5.00 8.09 4.64 3.98 4.89 2.00 1.50]T.

The thickness parameter was set to D = 0.05, which allows for achieving good predictive
power of the surrogate while using a small number of training data points. The in-depth
analysis of the dependence of the modeling error on the parameter D can be found in Koziel
and Pietrenko-Dabrowska (2019).

Figure 4.
Evaluation of the
nested kriging
surrogate for MO
process

y � SN –1� [–dw,dw]

Mapping to weighting
vector (eqn. (10))

Evaluate first-level
surrogate

Evaluate second-level
surrogate

Rs(x)

(eqn.

fiff
rogat

rogat

w

x = sI(w)

Notes: The model is operated
from the domain SN–1 × [–dw, dw],
and the argument y is first
mapped into the space of the
weighting vectors using (10),
then into the surrogate model
domain XS (part of the antenna
geometry parameter space),
where the second-level surrogate
is finally evaluated to yield the
antenna responses
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The nested kriging model was set up as outlined in Sections 2.3 and 2.4 using only 100
data samples. The relative RMS error of the surrogate (determined through cross validation)
is 5 per cent for the reflection response and 1 per cent for the gain. The relative error is
defined as jjR(x) � Rs(x)jj/jjR(x)jj, where Rs stands for the surrogate. The 10-fold cross-
validation has been used (Queipo et al., 2005).

To emphasize the benefits of the proposed approach, the surrogate was also constructed
within the initially reduced space, i.e. the interval l* = min{x*(1), x*(2)} and u* = max{x*(1),
x*(2)}. Despite of using 1,600 training samples, the model error levels were much higher: 9
and 3 per cent for reflection and gain characteristics, respectively.

The initial Pareto set found by optimizing the surrogate using MOEA is shown in
Figure 6 along with the selected designs evaluated through EM simulation, before and after
the refinement process. The corresponding numerical data has been gathered in Table I.
Figure 7 shows the reflection and realized gain characteristics for the selected designs.
Table II summarizes the optimization cost which includes finding the reference designs.

Note that the major contributor is the training data acquisition for setting up the
surrogate model which is dramatically reduced for the proposed framework (from 1,600 to

Figure 5.
Geometry of the

planar Yagi antenna
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Figure 6.
Pareto-optimal

solutions found for
the Yagi antenna of
Figure 5 using the

proposed
methodology
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Notes: (o) Initial Pareto set identified using MOEA executed on the nested
kriging surrogate; (�) EM-evaluated selected designs from the initial Pareto
set; (O) EM-simulated refined Pareto designs
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only 100 samples). This leads to lowering the total expenses by 80 per cent. Also, the overall
cost is just around 400 EM simulations despite the fact that single-fidelity models are used.
Another advantage of our approach is a more precise identification of the initial Pareto set,
which is because of a considerably smaller domain of the nested kriging model and better

Table I.
Planar Yagi antenna:
Pareto-optimal
designs

Design variables (mm)
Design # s1 s2 v1 v2 u1 u2 u3 u4 Max |S11| (Db) Gaina (dB)

1 4.41 3.88 8.78 4.25 4.05 4.78 2.07 1.60 �26.1 5.6
2 4.46 4.08 8.71 4.34 3.98 4.86 2.03 1.60 �24.0 5.7
3 4.52 4.25 8.64 4.44 3.91 4.90 2.03 1.58 �22.6 5.9
4 4.62 4.52 8.48 4.49 3.92 4.94 2.00 1.57 �20.7 6.0
5 4.76 4.74 8.26 4.56 4.00 4.91 2.00 1.56 �19.0 6.2
6 4.86 5.11 8.05 4.59 3.99 4.89 2.01 1.48 �18.0 6.4
7 4.93 5.50 7.86 4.66 3.92 4.88 2.05 1.38 �16.4 6.6
8 4.99 5.82 7.66 4.75 3.84 4.86 2.09 1.27 �15.0 6.7
9 5.08 6.30 7.41 4.86 3.72 4.83 2.16 1.13 �13.8 6.9

10 5.17 6.83 7.12 5.01 3.58 4.81 2.23 0.95 �12.7 7.0

Note: aEnd-fire gain averaged over the 10-11GHz bandwidth

Figure 7.
Reflection (left) and
realized gain (right)
characteristics of the
selected Pareto-
optimal designs of
Table I: x(1) (—), x(4)
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Table II.
Yagi antenna:
optimization cost
breakdown

Cost item
Surrogate model domain

XS (this work) Hypercube [l*,u*]

Extreme points 280�R 160�R
Data acquisition for kriging surrogate 100�R 1,600�R
MOEA optimizationa N/A N/A
Refinement 30�R 30�R
Total costb 410�R (27 h) 1,790�R (118 h)

Notes: aThe cost of MOEA optimization is negligible compared to other stages of the process; bthe total
cost is expressed in terms of the equivalent number of EM simulations
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predictive power of the surrogate. This is illustrated in Figure 8 that shows the initial Pareto
set found using the surrogate established in the initially reduced design space. It can be
observed that the span of the front obtained using the proposed methodology is
considerably wider and of better quality (in terms of the objective function values) than the
one yielded by the benchmark method. Even more importantly, significant discrepancies
between the initial front, the EM-simulated objectives and the refined designs can be
noticed, demonstrating the lack of surrogate model accuracy.

The selected designs have been fabricated and measured for additional verification.
Figure 9 shows the photographs of the antenna prototypes, whereas Figure 10 provides a
comparison of the simulated andmeasured reflection and realized gain characteristics (these

Figure 8.
Pareto-optimal

solutions found using
the surrogate-assisted

algorithmworking
with initial design
space reduction

(surrogate
constructed within
the interval [l*,u*]).

–26 –24 –22 –20 –18 –16 –14 –12 –10

max| S
11

| [dB]

5.5

6

6.5

7

A
ve

ra
ge

 g
ai

n 
[d

B
]

–26 –24 –22 –20 –18 –16 –14 –12 –10

max| S
11

| [dB]

5.5

6

6.5

7

A
ve

ra
ge

 g
ai

n 
[d

B
]

(a)

(b)

Notes: (a) (o) Initial Pareto set identified using MOEA executed on the nested
kriging surrogate, (�) EM-evaluated selected designs from the initial Pareto set,
(O) EM-simulated refined Pareto designs. For comparison, the initial Pareto set
found using the proposed methodology is shown using gray circles. Note
considerably larger span of the Pareto set found using the nested kriging
surrogate as well as better consistency between the initial and refined
Pareto-optimal designs (cf. Figure 6); (b) the approximate image of the initially
reduced parameter space (large circles), i.e., the interval [l* u*], obtained by
randomly generating 10,000 points. It can be observed that the considered
design objectives are indeed partially conflicting and the optimization process
is required in order to identify the Pareto-optimal designs (small circles). Vast
majority of the designs in the interval [l* u*] are far from being optimal
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being design objectives considered in the optimization process). It can be observed that the
agreement between the two sets of data is satisfactory.

3.2 Case 2: wideband monopole antenna
Our second example is the ultrawideband monopole antenna (Alsath and
Kanagasabai, 2015) implemented on Taconic RF-35 substrate (« r = 3.5, h = 0.762 mm)

Figure 10.
Simulated (gray) and
measured (black)
reflection and realized
gain characteristics of
the fabricated Yagi
antenna prototypes
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Notes: (a) Design 1; (b) design 5; (c) design 10

Figure 9.
Photographs of the
fabricated prototypes
of the Yagi antenna
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and shown in Figure 11. The independent geometry parameters for this structure are
x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]

T. The computational model is implemented in
CST Microwave Studio and evaluated using its transient solver (approximately
840,000 mesh cells and simulation time of 5 min). The EM model incorporates the
SMA connector.

The antenna is to operate within the UWB band of 3.1-10.6GHz. Three figures of interest
are considered: minimization of in-band reflection (F1), reduction of the realized gain
variability within the operating band (F2) and reduction of the antenna size (F3). As before,
the thickness parameter was set toD= 0.05.

The surrogate model is set up using seven reference designs. These include three
extreme designs (best matching, minimum gain variation and minimum size): x*(1) =
[10.64 0.0 6.00 0.10 1.46 6.20 10.46 4.26 2.00 0.73 0.49]T, x*(2) = [8.74 1.55 5.81 0.51 0.016
5.65 8.95 5.47 2.60 0.99 0.84]T, x*(3) = [9.51 0.19 4.46 0.27 4.33 1.17 10.05 6.00 2.94 0.99
0.90]T, and four more, corresponding to z = [0.0 0.5]T, z = [0.5 0.0]T, z = [0.5 0.5]T, and
z = [0.333 0.333]T (cf. (6)): x*(4) = [10.04 0.43 5.85 0.26 0.0 6.46 10.01 5.49 2.14 1.00
0.83]T, x*(5) = [9.58 0.0 5.05 0.28 3.37 4.14 9.68 5.26 2.37 0.85 0.89]T, x*(6) = [8.76 0.0
5.62 0.69 2.24 2.92 8.93 5.94 2.58 0.99 0.27]T, x*(7) = [9.52 0 0.37 5.08 0.16 2.61 4.85 9.55
5.39 2.25 0.91 0.88]T.

The nested kriging model was set up using 200 data samples. The RMS error of the
surrogate is 7.5 per cent for the reflection response and 4 per cent for the gain. For the
sake of comparison, the surrogate was also constructed within the initially reduced
space, i.e. the interval l* = min{x*(1), x*(2)} and u* = max{x*(1), x*(2)}, using 1,600
training samples. The obtained error values are much higher: 15 and 11 per cent for
reflection and gain characteristics, respectively. It should be noted that this case is
considerably more difficult from the standpoint of surrogate model construction

Figure 11.
Geometry of the
ultrawideband

monopole antenna
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because of higher dimensionality of the parameter space (11 variables vs 8 for the Yagi
antenna) as well as wider parameter ranges.

Figure 12 shows the initial Pareto set found through MOEA-optimization of the
nested kriging surrogate as well as the selected designs evaluated using EM
simulation (before and after the refinement). Table III provides the numerical data,
whereas Figure 13 shows the reflection and realized gain characteristics for the

Table III.
UWB Antenna:
Pareto-optimal
designs

Design 1 2 3 4 5 6 7 8 9 10 11 12

Max |S11| (dB) �14.9 �10.5 �9.8 �12.2 �11.1 �12.9 �13.6 �12.5 �11.2 �11.3 �10.7 �10.1
Gain variability (dB) 4.8 3.1 4.4 3.5 2.8 3.7 4.3 4.3 4.9 3.6 3.7 4.3
Footprint area (mm2) 564 487 292 497 441 508 508 453 373 418 387 308

Design variables
L0 10.5 9.18 9.19 9.55 9.21 9.79 10.1 9.76 9.00 9.19 8.81 9.23
dR 0.06 1.10 0.00 0.79 0.72 0.61 0.05 0.16 0.10 0.39 0.14 0.01
R 5.88 5.52 4.91 5.52 5.26 5.51 5.61 5.29 5.19 5.20 5.51 4.95
rrel 0.16 0.33 0.43 0.38 0.31 0.21 0.27 0.32 0.51 0.30 0.69 0.38
dL 1.49 0.55 3.88 0.37 1.44 0.41 1.66 2.63 3.30 2.48 2.35 4.04
Dw 6.12 5.78 1.55 6.06 4.95 6.29 5.56 4.69 3.09 4.24 3.30 1.79
Lg 10.3 9.18 9.77 9.58 9.33 9.75 10.0 9.78 9.35 9.31 9.08 9.74
L1 4.57 5.53 6.00 5.46 5.51 5.53 5.02 5.19 5.86 5.51 5.95 6.00
R1 2.05 2.42 2.81 2.30 2.32 2.24 2.12 2.27 2.59 2.34 2.59 2.78
dr 0.81 1.00 1.00 1.00 0.97 0.99 0.91 0.85 0.96 0.98 1.00 0.99
crel 0.58 0.90 0.67 0.85 0.74 0.78 0.69 0.84 0.55 0.70 0.29 0.71

Figure 12.
Pareto-optimal
solutions found for
the UWBmonopole
antenna of Figure 11
using the proposed
methodology
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selected designs. The optimization process cost breakdown has been given in
Table IV. Similarly as for the first example, acquisition of the training data plays the
major role and the proposed methodology allows us to reduce the overall expenses by
over 50 per cent. For this example, the nested kriging surrogate and the surrogate
constructed in the initially reduced space lead to similar initial Pareto fronts as
illustrated in Figure 14 with the slightly wider span of the front for the latter model
(this being a consequence of a larger model domain).

Selected Pareto-optimal designs of the antenna of Figure 11 have been fabricated and
measured. Figure 15 shows the photographs of the antenna prototypes. The relevant
antenna characteristics, i.e. reflection and realized gain, are shown in Figure 16. The
agreement between simulations andmeasurements is satisfactory.

4. Conclusion
In the paper, a technique for computationally efficient multi-objective design
optimization of antenna structures has been proposed. Our methodology adopts a
nested kriging modeling approach to identify a region of the design space that
contains the best trade-off designs, and to set up – within that region – a fast
surrogate model used to yield an initial approximation of the Pareto set. A rigorous
formalism has been introduced to generalize the nested kriging framework and

Figure 13.
Reflection (left) and
realized gain (right)
characteristics of the

selected Pareto-
optimal designs of

Table III: x(1) (—), x(3)
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Table IV.
UWB antenna:

optimization cost
breakdown

Cost item
Surrogate model domain

XS (this work) Hypercube [l*,u*]

Extreme points 750�R 440�R
Data acquisition for kriging surrogate 200�R 1,600�R
MOEA optimizationa N/A N/A
Refinement 36�R 36�R
Total costb 986�R (82 h) 2,076�R (173 h)

Notes: aThe cost of MOEA optimization is negligible compared to other stages of the process. bThe total
cost is expressed in terms of the equivalent number of EM simulations
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apply it over an arbitrary subset of the objective space instead of the interval (as in
the original formulation of the method).

The resulting framework has been comprehensively validated using two antenna
examples, a planar Yagi and a UWB monopole, optimized for two and three objectives,
respectively. It has been demonstrated that the proposed framework offers significant
reduction of the computational cost of up to 80 per cent as compared to the state-of-the-
art surrogate-assisted approach while retaining or even improving the quality of Pareto
front representation.

Figure 14.
Initial Pareto sets
obtained using the
proposed
methodology (black)
and the surrogate
model established in
the initially reduced
design space (the
interval [l*,u*]) (gray)
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Notes: (a) It can be observed that the Pareto front span is similar in both cases (slightly larger
for the initially reduced space due to its considerably larger volume); (b) the approximate
image of the initially reduced parameter space (large circles), i.e., the interval [l* u*],
obtained by randomly generating 10,000 points. Similarly as for the previous example, it can
be observed that the considered design objectives are indeed partially conflicting and the
optimization process is required in order to identify the Pareto-optimal designs (small circles).
Vast majority of the designs in the interval [l* u*] are far from being optimal
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In this work, the entire optimization process was intentionally carried out using
exclusively high-fidelity EM simulation models. This was to demonstrate that even within
this setup, the computational overhead of the MO process can be manageable. The future
work will include generalizations of the proposed methodology incorporating variable-
fidelity simulations.

Figure 15.
Photographs of the

fabricated prototypes
of the UWB
monopole

Figure 16.
Simulated (gray) and

measured (black)
reflection and realized
gain characteristics of
the fabricated UWB
monopole prototypes

2 4 6 8 10 12

Frequency [GHz]

–35

–30

–25

–20

–15

–10

–5

0

|S
11

| [
dB

]

2 4 6 8 10 12

Frequency [GHz]

–35

–30

–25

–20

–15

–10

–5

0

|S
11

| [
dB

]

2 4 6 8 10 12

Frequency [GHz]

–35

–30

–25

–20

–15

–10

–5

0
| S

11
| [

dB
]

4 6 8 10

Frequency [GHz]

–5

0

5

R
ea

liz
ed

 g
ai

n 
[d

B
]

4 6 8 10

Frequency [GHz]

–5

0

5

R
ea

liz
ed

 g
ai

n 
[d

B
]

4 6 8 10

Frequency [GHz]

–5

0

5

R
ea

liz
ed

 g
ai

n 
[d

B
]

(a) (b) (c)

Notes: (a) Design 3; (b) design 5; (c) design 10

Optimization
of antennas

1509



References
Akinsolu, M.O., Liu, B., Grout, V., Lazaridis, P.I., Mognaschi, M.E. and Di Barba, P. (2019), “A parallel

surrogate model assisted evolutionary algorithm for electromagnetic design optimization”, IEEE
Transactions on Emerging Topics in Computational Intelligence, Vol. 3 No. 2, pp. 93-105.

Alsath, M.G.N. and Kanagasabai, M. (2015), “Compact UWB monopole antenna for automotive
communications”, IEEE Transactions on Antennas and Propagation, Vol. 63 No. 9,
pp. 4204-4208.

An, S., Yang, S. and Mohammed, O.A. (2018), “A kriging-assisted light beam search method for multi-
objective electromagnetic inverse problems”,Transactions onMagnetics, Vol. 54 No. 3, pp. 1-4.

Aravanis, A.I., Bhavani Shankar, M.R., Arapoglou, P., Danoy, G., Cottis, P.G. and Ottersten, B. (2015),
“Power allocation in multibeam satellite systems: a two-stage multi-objective optimization”,
IEEE Transactions onWireless Communications, Vol. 14 No. 6, pp. 3171-3182.

Bauernfeind, T., Baumgartner, P., Biro, O., Magele, C.A., Preis, K. and Torchio, R. (2017), “PEEC-based
multi-objective synthesis of non-uniformly spaced linear antenna arrays”, IEEE Transactions on
Magnetics, Vol. 53 No. 6.

Bhattacharya, R., Garg, R. and Bhattacharyya, T.K. (2016), “Design of a PIFA-driven compact Yagi-
type pattern diversity antenna for handheld devices”, IEEE Antennas and Wireless Propagation
Letters, Vol. 15, pp. 255-258.

Borhani, M., Rezaei, P. and Valizade, A. (2016), “Design of a reconfigurable miniaturized microstrip
antenna for switchable multiband systems”, IEEE Antennas and Wireless Propagation Letters,
Vol. 15, pp. 822-825.

Buckley, J.L., McCarthy, K.G., Loizou, L., O’Flynn, B. and O’Mathuna, C. (2016), “A dual-ISM-band
antenna of small size using a spiral structure with parasitic element”, IEEE Antennas and
Wireless Propagation Letters, Vol. 15, pp. 630-633.

Chauhan, N.C., Kartikeyan, M.V. and Mittal, A. (2012), Soft Computing Methods for Microwave and
Millimeter-Wave Design Problems. Studies in Computational Intelligence, Vol. 392, Springer,
Berlin, Heidelberg.

Chen, Y.S. (2015), “Application of multi-objective fractional factorial design for ultra-wideband
antennas with uniform gain and high-fidelity”, IET Microwaves, Antennas and Propagation,
Vol. 9 No. 15, pp. 1667-1672.

Darvish, A. and Ebrahimzadeh, A. (2018), “Improved fruit-fly optimization algorithm and its
applications in antenna array synthesis”, IEEE Transactions on Antennas and Propagation,
Vol. 66 No. 4, pp. 1756-1766.

de Villiers, D.I.L., Couckuyt, I. and Dhaene, T. (2017), “Multi-objective optimization of reflector antennas
using kriging and probability of improvement”, IEEE International Symposium on Antennas
and Propagation and USNC/URSI National Radio Science Meeting, San Diego, USA,
pp. 985-986.

Deb, K. (2001),Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY.
Deb, K. and Gupta, H. (2006), “Introducing robustness in multi-objective optimization”, Evolutionary

Computation, Vol. 14 No. 4, pp. 463-494.
Easum, J.A., Nagar, J. andWerner, D.H. (2017), “Multi-objective surrogate-assisted optimization applied

to patch antenna design”, EEE International Symposium on Antennas and Propagation and
USNC/URSI National Radio Science Meeting, IEEE. San Diego, pp. 339-340.

Easum, J.A., Nagar, J., Werner, P.L. and Werner, D.H. (2018), “Efficient multi-objective antenna
optimization with tolerance analysis through the use of surrogate models”, IEEE Transactions
on Antennas and Propagation, Vol. 66 No. 12, pp. 6706-6715.

Fonseca, C.M. (1995), “Multiobjective genetic algorithms with application to control engineering
problems”, PhD thesis, Department of Automatic Control and Systems Engineering, University
of Sheffield, Sheffield.

EC
37,4

1510



Goudos, S.K., Siakavara, K., Samaras, T., Vafiadis, E.E. and Sahalos, J.N. (2011), “Self-adaptive
differential evolution applied to real-valued antenna and microwave design problems”, IEEE
Transactions on Antennas and Propagation, Vol. 59 No. 4, pp. 1286-1298.

Jacobs, J.P. (2012), “Bayesian support vector regression with automatic relevance determination kernel
for modeling of antenna input characteristics”, IEEE Transactions on Antennas and
Propagation, Vol. 60 No. 4, pp. 2114-2118.

Jayaprakasam, S., Abdul Rahim, S.K., Leow, C.Y. and Mohd Yusof, M.F. (2014), “Beampatten
optimization in distributed beamforming using multiobjective and metaheuristic method”, IEEE
Symposium onWireless Technology and Applications (ISWTA), IEEE,Kota Kinabalu, pp. 86-91.

Kaneda, N., Deal, W.R., Qian, Y., Waterhouse, R. and Itoh, T. (2002), “A broad-band planar quasi Yagi
antenna”, IEEE Trans. Antennas Propag, Vol. 50, pp. 1158-1160.

Koziel, S. and Bekasiewicz, A. (2015), “Rotational design space reduction for cost-efficient multi-
objective antenna optimization”, European Conference on Antennas and Propagation (EuCAP),
IEEE, Lisbon, pp. 1-4.

Koziel, S. and Bekasiewicz, A. (2016), Multi-Objective Design of Antennas Using Surrogate Models,
World Scientific, Singapore.

Koziel, S. and Ogurtsov, S. (2013), “Multi-objective design of antennas using variable-fidelity
simulations and surrogate models”, IEEE Transactions on Antennas and Propagation, Vol. 61
No. 12, pp. 5931-5939.

Koziel, S. and Ogurtsov, S. (2014), “Design optimization of antennas using electromagnetic simulations
and adaptive response correction technique”, IET Microwaves, Antennas and Propagation,
Vol. 8 No. 3, pp. 180-185.

Koziel, S. and Pietrenko-Dabrowska, A. (2019), “Performance-based nested surrogate modeling of
antenna input characteristics”, IEEETransactions on Antennas and Propagation, Vol. 67, IEEE.

Koziel, S. and Sigurdsson, A.T. (2017), “Triangulation-based constrained surrogate modeling of
antennas”, IEEE Transactions on Antennas and Propagation, Vol. 66 No. 8, pp. 4170-4179.

Koziel, S., Cheng, Q.S. and Bandler, J.W. (2008), “Space mapping”, IEEE Microwave Magazine, Vol. 9
No. 6, pp. 105-122.

Koziel, S., Cheng, Q.S. and Li, S. (2018), “Optimization-driven antenna design framework with multiple
performance constraints”, International Journal of RF and Microwave CAE, Vol. 28 No. 4,
p. e21208.

Koziel, S., Bekasiewicz, A. and Zieniutycz, W. (2014a), “Expedited EM-driven multi-objective antenna
design in highly-dimensional parameter spaces”, IEEE Antennas and Wireless Propagation
Letters, Vol. 13, pp. 631-634.

Koziel, S., Bekasiewicz, A., Couckuyt, I. and Dhaene, T. (2014b), “Efficient multi-objective simulation-
driven antenna design using co-kriging”, IEEE Transactions on Antennas and Propagation,
Vol. 62 No. 11, pp. 5900-5905.

Liu, B., Akinsolu, M.O., Ali, N. and Abd-Alhameed, R. (2018), “Efficient global optimisation of
microwave antennas based on a parallel surrogate model-assisted evolutionary algorithm”, IET
Microwaves, Antennas and Propagation, Vol. 13 No. 2, pp. 149-155.

Liu, J., Esselle, K.P., Hay, S.G. and Zhong, S. (2014), “Effects of printed UWB antenna miniaturization on
pulse fidelity and pattern stability”, IEEE Transactions on Antennas and Propagation, Vol. 62
No. 8, pp. 3903-3910.

Lyu, W., Yang, F., Yan, C., Zhou, D. and Zeng, X. (2018), “Multi-objective Bayesian optimization for
analog/RF circuit synthesis”, ACM/ESDA/IEEE Design Automation Conference, San Francisco,
CA.

Matekovits, L., Laza, V.A. and Vecchi, G. (2007), “Analysis of large complex structures with the
synthetic-functions approach”, IEEE Transactions on Antennas and Propagation, Vol. 55 No. 9,
pp. 2509-2521.

Optimization
of antennas

1511



Mishra, S., Yadav, R.N. and Singh, R.P. (2015), “Directivity estimations for short dipole antenna arrays
using radial basis function neural networks”, IEEE Antennas and Wireless Propagation Letters,
Vol. 14, pp. 1219-1222.

Nagar, J. and Werner, D.H. (2018), “Multi-objective optimization for electromagnetics and optics: an
introduction and tutorial”, IEEEAntennas and PropagationMagazine, Vol. 60 No. 6, pp. 58-71.

Na, W., Feng, F., Zhang, C. and Zhang, Q.J. (2017), “A unified automated parametric modeling
algorithm using knowledge-based neural network and l1 optimization”, IEEE Transactions on
Microwave Theory and Techniques, Vol. 65 No. 3, pp. 726-745.

Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R. and Tucker, P.K. (2005), “Surrogate
based analysis and optimization”, Progress in Aerospace Sciences, Vol. 41 No. 1, pp. 1-28.

Rinaldo, R., Maufroid, X. and Garcia, R.C. (2005), “Non-uniform bandwidth and power allocation in
multi-beam broadband satellite systems”, Proceedings 23rd AIAA ICSSC, Rome.

Simpson, T.W., Pelplinski, J.D., Koch, P.N. and Allen, J.K. (2001), “Metamodels for computer-based
engineering design: survey and recommendations”, Engineering with Computers, Vol. 17 No. 2,
pp. 129-150.

Soltani, S., Lotfi, P. and Murch, R.D. (2017), “A dual-band multiport MIMO slot antenna for WLAN
applications”, IEEE Antennas andWireless Propagation Letters, Vol. 16, pp. 529-532.

Stutzman,W.L. and Thiele, G.A. (2012),Antenna Theory and Design, 3rd ed.,Wiley, New York, NY.

Szini, I., Tatomirescu, A. and Pedersen, G.F. (2015), “On small terminal MIMO antennas, harmonizing
characteristic modes with ground plane geometry”, IEEE Transactions on Antennas and
Propagation, Vol. 63 No. 4, pp. 1487-1497.

Tian, B., Li, Z. and Wang, C. (2010), “Boresight gain optimization of an UWB monopole antenna using
FDTD and genetic algorithm”, IEEE International Conference on Ultra-Wideband, IEEE,
Nanjing, pp. 1-4.

Further reading
Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, MIT Press,

Cambridge, MA.

Corresponding author
Anna Pietrenko-Dabrowska can be contacted at: anndabr1@pg.edu.pl

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

EC
37,4

1512

mailto:anndabr1@pg.edu.pl

	Rapid multi-objective optimization of antennas using nested kriging surrogates and single-fidelity EM simulation models
	1. Introduction
	2. Antenna optimization with multiple objectives aided by nested kriging surrogates
	2.1 Multi-objective optimization using surrogate models
	2.2 Reduction of parameter ranges
	2.3 Surrogate modeling using nested kriging
	2.4 Nested kriging for multi-objective design framework

	3. Application case studies
	3.1 Case 1: planar Yagi antenna
	3.2 Case 2: wideband monopole antenna

	4. Conclusion
	References


