Search results

1 – 10 of 24
Book part
Publication date: 20 November 2023

Sema Üstgörül

Key enabling technologies (KETs) are a set of six technological components that work together to address social challenges and build advanced for sustainable economies. Industry…

Abstract

Key enabling technologies (KETs) are a set of six technological components that work together to address social challenges and build advanced for sustainable economies. Industry 5.0, the next industrial development, is designed to capitalize on specialists' unique creativity while also collaborating with powerful, intelligent, and precise technologies. Industry 5.0 outsourced repetitive and monotonous activities to robots/machines requiring employees to perform activities that involve critical thinking and are based on the 6R (Recognize, Reconsider, Realize, Reduce, Reuse, and Recycle), to improve production quality. With numerous supporting technical advancements, advanced and quick manufacturing concentrating on the interaction of machines and humans may be produced. Maintaining healthcare and nursing care, evaluating patients' health requirements using KETs, and giving care with manpower are all major advancements in Industry 5.0 today. Future studies may focus on providing healthcare using mainly technology and, therefore, no human workers. This chapter highlights healthcare advances in Industry 5.0, where KETs and people collaborate to create and innovate. In this framework, the purpose of this chapter is to present the deployment of KETs in the nursing patient care process.

Details

Digitalization, Sustainable Development, and Industry 5.0
Type: Book
ISBN: 978-1-83753-191-2

Keywords

Article
Publication date: 5 February 2024

Prabir Barman, Srinivasa Rao Pentyala and B.V. Rathish Kumar

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and…

Abstract

Purpose

A porous cavity flow field generates entropy owing to energy and momentum exchange within the fluid and at solid barriers. The heat transport and viscosity effects on fluid and solid walls irreversibly generate entropy. This numerical study aims to investigate convective heat transfer together with entropy generation in a partially heated wavy porous cavity filled with a hybrid nanofluid.

Design/methodology/approach

The governing equations are nondimensionalized and the domain is transformed into a unit square. A second-order finite difference method is used to have numerical solutions to nondimensional unknowns such as stream function and temperature. This numerical computation is conducted to explore a wide range of regulating parameters, e.g. hybrid nano-particle volume fraction (σ = 0.1%, 0.33%, 0.75%, 1%, 2%), Rayleigh–Darcy number (Ra = 10, 102, 103), dimensionless length of the heat source (ϵ = 0.25, 0.50,1.0) and amplitude of the wave (a = 0.05, 0.10, 0.15) for a number of undulations (N = 1, 3) per unit length.

Findings

A thorough analysis is conducted to analyze the effect of multiple factors such as thermal convective forces, heat source, surface corrugation factors, nanofluid volume fraction and other parameters on entropy generation. The flow and temperature fields are studied through streamlines and isotherms. The average Bejan number suggested that entropy generation is entirely dominated by irreversibility due to heat transport at Ra = 10, and the irreversibility due to the viscosity effect is severe at Ra = 103, but the increment in s augments irreversibility due to the viscosity effect over the heat transport at Ra = 102.

Originality/value

To the best of the authors’ knowledge, this numerical study, for the first time, analyzes the influence of surface corrugation on the entropy generation related to the cooling of a partial heat source by the convection of a hybrid nanofluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 January 2024

Silvia Badini, Serena Graziosi, Michele Carboni, Stefano Regondi and Raffaele Pugliese

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical…

Abstract

Purpose

This study evaluates the potential of using the material extrusion (MEX) process for recycling waste tire rubber (WTR). By investigating the process parameters, mechanical behaviour and morphological characterisation of a thermoplastic polyurethane-waste tire rubber composite filament (TPU-WTR), this study aims to establish a framework for end-of-life tire (ELT) recycling using the MEX technology.

Design/methodology/approach

The research assesses the impact of various process parameters on the mechanical properties of the TPU-WTR filament. Hysteresis analysis and Poisson’s ratio estimation are conducted to investigate the material’s behaviour. In addition, the compressive performance of diverse TPU-WTR triply periodic minimal surface lattices is explored to test the filament suitability for printing intricate structures.

Findings

Results demonstrate the potential of the TPU-WTR filament in developing sustainable structures. The MEX process can, therefore, contribute to the recycling of WTR. Mechanical testing has provided insights into the influence of process parameters on the material behaviour, while investigating various lattice structures has challenged the material’s capabilities in printing complex topologies.

Social implications

This research holds significant social implications addressing the growing environmental sustainability and waste management concerns. Developing 3D-printed sustainable structures using recycled materials reduces resource consumption and promotes responsible production practices for a more environmentally conscious society.

Originality/value

This study contributes to the field by showcasing the use of MEX technology for ELT recycling, particularly focusing on the TPU-WTR filament, presenting a novel approach to sustainable consumption and production aligned with the United Nations Sustainable Development Goal 12.

Article
Publication date: 11 March 2024

Lili Wang, Ying’ao Liu, Jingdong Duan and Yunlong Bao

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Abstract

Purpose

This study aims to enhance the lubrication performance of thrust bearings. The influence of columnar convex–concave compound microtexture on bearing performance is investigated

Design/methodology/approach

Based on the compound microtexture model of thrust bearings, considering surface roughness and turbulent effect, the variation of lubrication characteristics with the change in the compound microtexture parameters is studied.

Findings

The results indicate that, compared with circular microtexture, the maximum pressure of compound microtexture of thrust bearings increases by 7.42%. Optimal bearing performance is achieved when the internal microtexture depth is 0.02 mm. Turbulent flow states and surface roughness lead to a reduction in the optimal depth. The maximum pressure and load-carrying capacity of the bearing decrease as the initial angle increases, whereas the friction coefficient increases with the increase in the initial angle. The lubrication performance is best for bearings with a circumferential parallel arrangement of microtexture.

Originality/value

The novel composite microtexture with columnar convex-concave is proposed, and the computational model of thrust bearings is set. The influence of surface roughness and turbulent flow on the bearing performance should be considered for better conforming with engineering practice. The effect of microtexture depth, arrangement method and distribution position on the lubrication performance of the compound microtexture thrust bearing is investigated, which is of great significance for improving tribology, thrust bearings and surface microtexture theory.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 August 2023

Elodie de Boissieu and Patricia Baudier

Social robots are invading our daily lives. Recently, thanks to artificial intelligence, humanoid social robots have been developed and influence individuals on social media. This…

1194

Abstract

Purpose

Social robots are invading our daily lives. Recently, thanks to artificial intelligence, humanoid social robots have been developed and influence individuals on social media. This paper aims to understand the perception of luxury consumers regarding human-like virtual influencers (VI) in a multicultural context.

Design/methodology/approach

Conducting a qualitative method, the authors interviewed 32 Chinese and French consumers of luxury products from the Gen-Z and millennial generation about their perception of human influencers and human-like VI after following them on social media specific platforms.

Findings

Using source credibility theory, this research unveils the different ways in which consumers perceive human-like VI according to their physical or content attractiveness, expertise, similarities and trustworthiness. The results suggest that the perception of human-like VI by millennials and Gen-Z is closely related to their cultural setting and their familiarity of the technology in a luxury context.

Originality/value

Considering Gen-Z and millennials' willing for para-social interactions and given the importance to the credibility of the source or the emotions displayed by VI, the intercultural empirical setting of this study introduces the ambivalence of the perception of social robots versus human-like influencers in a luxury digital context.

Details

Journal of Organizational Change Management, vol. 36 no. 7
Type: Research Article
ISSN: 0953-4814

Keywords

Article
Publication date: 21 February 2024

Mohamed Bechir Ben Hamida

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration…

Abstract

Purpose

This study investigates the impact of three parameters such as: number of LED chips, pitch and LED power on the junction temperature of LEDs using a best heat sink configuration selected according to a lower temperature. This study provides valuable insights into how to design LED arrays with lower junction temperatures.

Design/methodology/approach

To determine the best configuration of a heat sink, a numerical study was conducted in Comsol Multiphysics on 10 different configurations. The configuration with the lowest junction temperature was selected for further analysis. The number of LED chips, pitch and LED power were then varied to determine the optimal configuration for this heat sink. A general equation for the average LED temperature as a function of these three factors was derived using Minitab software.

Findings

Among 10 configurations of the rectangular heat sink, we deduce that the best configuration corresponds to the first design having 1 mm of width, 0.5 mm of height and 45 mm of length. The average temperature for this design is 50.5 C. For the power of LED equal to 50 W–200 W, the average temperature of this LED drops when the number of LED chips reduces and the pitch size decreases. Indeed, the best array-LED corresponds to 64 LED chips and a pitch size of 0.5 mm. In addition, a generalization equation for average temperature is determined as a function of the number of LED chips, pitch and power of LED which are key factors for reducing the Junction temperature.

Originality/value

The study is original in its focus on three factors that have not been studied together in previous research. A numerical simulation method is used to investigate the impact of the three factors, which is more accurate and reliable than experimental methods. The study considers a wide range of values for the three factors, which allows for a more comprehensive understanding of their impact. It derives a general equation for the average temperature of the LED, which can be used to design LED arrays with desired junction temperatures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2024

Ramgy Pararajasingam, Anuradha Samarajeewa Waidyasekara and Hasith Chathuranga Victar

Construction material management plays a significant role in achieving successful project delivery of a construction project. However, ineffective material management is a…

Abstract

Purpose

Construction material management plays a significant role in achieving successful project delivery of a construction project. However, ineffective material management is a critical issue in the construction industry, especially in developing economies, of which Sri Lanka is not an exception. Therefore, this study aims to focus on exploring the causes of ineffective material management practices in civil engineering construction projects in Sri Lanka and their impact on successful project delivery.

Design/methodology/approach

Furthermore, the literature findings were validated through the preliminary survey. Subsequently, a quantitative research approach was adopted to pursue the research aim. Questionnaire responses were obtained from 215 construction professionals in civil engineering projects who were selected using the judgemental and snowball sampling techniques. Collected data were analysed through Statistical Package for the Social Sciences (SPSS) V26 and Microsoft Excel 2016.

Findings

Moreover, the study revealed that material price fluctuation, shortage of material in the market, delay in material procurement, inadequate planning and delays in material delivery are the most frequent causes of ineffective material management in civil engineering projects. In addition, it was evidenced that most ineffective material management practices cause both time and cost overruns in civil engineering construction projects. Most respondents emphasized inadequate planning, inadequate qualified and experienced staff, lack of supervision and lack of leadership as the causes for both time and cost overruns.

Originality/value

The study was concluded by proposing strategies for effective material management. Education/training/enlightenment of staff in charge of materials management, use of software like Microsoft Project, Primavera and similar software to eliminate manual errors in material management, and providing clear specifications to suppliers were the most agreed strategies for effective material management in civil engineering construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 24 August 2023

Yankun Tang, Ming Zhang, Kedong Chen, Sher Ali Nawaz, Hairong Wang, Jiuhong Wang and Xianqing Tian

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized…

Abstract

Purpose

Detecting O2 gas in a confined space at room temperature is particularly important to monitor the work process of precision equipment. This study aims to propose a miniaturized, low-cost, mass-scale produced O2 sensor operating around 30°C.

Design/methodology/approach

The O2 sensor based on lanthanum fluoride (LaF3) solid electrolyte thin film was developed using MEMS technology. The principle of the sensor was a galvanic cell H2O, O2, Pt | LaF3 | Sn, SnF2 |, in which the Sn film was prepared by magnetron sputtering, and the LaF3 film was prepared by thermal resistance evaporation.

Findings

Through pretreatments, the sensor’s response signal to 40% oxygen concentration was enhanced from 1.9 mV to 46.0 mV at 30°C and 97.0% RH. Tests at temperatures from 30°C to 50°C and humidity from 32.4% RH to 97.0% RH indicated that the output electromotive force (EMF) has a linear relationship with the logarithm of the oxygen concentration. The sensitivity of the sensor increases with an increase in both humidity and temperature in the couple mode, and the EMF of the sensor follows well with the Nernst equation at different temperatures and humidity.

Practical implications

This research could be applied to monitor the oxygen concentration below 25% in confined spaces at room temperature safely without a power supply.

Originality/value

The relationship between temperature and humidity coupling and the response of the sensor was obtained. The nano-film material was integrated with the MEMS process. It is expected to be practically applied in the future.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 September 2023

Talwinder Singh, Chandan Deep Singh and Rajdeep Singh

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in…

150

Abstract

Purpose

Because many cutting fluids contain hazardous chemical constituents, industries and researchers are looking for alternative methods to reduce the consumption of cutting fluids in machining operations due to growing awareness of ecological and health issues, government strict environmental regulations and economic pressures. Therefore, the purpose of this study is to raise awareness of the minimum quantity lubrication (MQL) technique as a potential substitute for environmental restricted wet (flooded) machining situations.

Design/methodology/approach

The methodology adopted for conducting a review in this study includes four sections: establishment of MQL technique and review of MQL machining performance comparison with dry and wet (flooded) environments; analysis of the past literature to examine MQL turning performance under mono nanofluids (M-NF); MQL turning performance evaluation under hybrid nanofluids (H-NF); and MQL milling, drilling and grinding performance assessment under M-NF and H-NF.

Findings

From the extensive review, it has been found that MQL results in lower cutting zone temperature, reduction in cutting forces, enhanced tool life and better machined surface quality compared to dry and wet cutting conditions. Also, MQL under H-NF discloses notably improved tribo-performance due to the synergistic effect caused by the physical encapsulation of spherical nanoparticles between the nanosheets of lamellar structured nanoparticles when compared with M-NF. The findings of this study recommend that MQL with nanofluids can replace dry and flood lubrication conditions for superior machining performance.

Practical implications

Machining under the MQL regime provides a dry, clean, healthy and pollution-free working area, thereby resulting the machining of materials green and environmentally friendly.

Originality/value

This paper describes the suitability of MQL for different machining operations using M-NF and H-NF.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0131/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 24