Search results

1 – 4 of 4
Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Article
Publication date: 24 April 2023

Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci and Metin Uymaz Salamci

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes…

324

Abstract

Purpose

This study aims to describe the effects of capillary forces or action, viscosity, gravity and inertia via the computational fluid dynamics (CFD) analysis. The study also includes distribution of the binder droplet over the powder bed after interacting from different heights.

Design/methodology/approach

Additive manufacturing (AM) has revolutionized many industries. Binder jetting (BJT) is a powder-based AM method that enables the production of complex components for a wide range of applications. The pre-densification interaction of binder and powder is vital among various parameters that can affect the BJT performance. In this study, BJT process is studied for the binder interaction with the powder bed of SS316L. The effect of the droplet-powder distance is thoroughly analysed. Two different droplet heights are considered, namely, h1 (zero) and h2 (9.89 mm).

Findings

The capillary and inertial effects are predominant, as the distance affects these parameters significantly. The binder spreading and penetration depth onto the powder bed is influenced directly by the distance of the binder droplet. The former increases with an increase in latter. The binder distribution over the powder bed, whether uniform or not, is studied by the stream traces. The penetration depth of the binder was also observed along the cross-section of the powder bed through the same.

Originality/value

In this work, the authors have developed a more accurate representative discrete element method of the powder bed and CFD analysis of binder droplet spreading and penetration inside the powder bed using Flow-3D. Moreover, the importance of the splashing due to the binder’s droplet height is observed. If splashing occurs, it will produce distortion in the powder, resulting in a void in the final part.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 June 2023

Asif Ur Rehman, Burak Karakas, Muhammad Arif Mahmood, Berkan Başaran, Rashid Ur Rehman, Mertcan Kirac, Marwan Khraisheh, Metin Uymaz Salamci and Rahmi Ünal

For metal additive manufacturing, metallic powders are usually produced by vacuum induction gas atomization (VIGA) through the breakup of liquid metal into tiny droplets by gas…

Abstract

Purpose

For metal additive manufacturing, metallic powders are usually produced by vacuum induction gas atomization (VIGA) through the breakup of liquid metal into tiny droplets by gas jets. VIGA is considered a cost-effective technique to prepare feedstock. In VIGA, the quality and the morphology of the produced particles are mainly controlled by the gas pressure used during powder production, keeping the setup configuration constant.

Design/methodology/approach

In VIGA process for metallic additive manufacturing feedstock preparation, the quality and morphology of the powder particles are mainly controlled by the gas pressure used during powder production.

Findings

In this study, Inconel-625 feedstock was produced using a supersonic nozzle in a close-coupled gas atomization apparatus. Powder size distribution (PSD) was studied by varying the gas pressure.

Originality/value

The nonmonotonic but deterministic relationships were observed between gas pressure and PSD. It was found that the maximum 15–45 µm percentage PSD, equivalent to 84%, was achieved at 29 bar Argon gas pressure, which is suitable for the LPBF process. Following on, the produced powder particles were used to print tensile test specimens via LPBF along XY- and ZX-orientations by using laser power = 475 W, laser scanning speed = 800 mm/s, powder layer thickness = 50 µm and hatch distance = 100 µm. The yield and tensile strengths were 9.45% and 13% higher than the ZX direction, while the samples printed in ZX direction resulted in 26.79% more elongation compared to XY-orientation.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 May 2022

Abid Ullah, Asif Ur Rehman, Metin Uymaz Salamci, Fatih Pıtır and Tingting Liu

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser…

Abstract

Purpose

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser power and scanning speed on the microstructure, melting behaviour and surface roughness of cuprous oxide (Cu2O) ceramic.

Design/methodology/approach

The experiments were designed based on varying laser power and scanning speed. The laser power was changed between 50 W and 140 W, and the scanning speed was changed between 170 mm/s and 210 mm/s. Other parameters, such as scanning strategy, layer thickness and hatch spacing, remain constant.

Findings

Laser power and scan speed are the two important laser parameters of great significance in the SLM technique that directly affect the molten state of ceramic powders. The findings reveal that Cu2O part defects are widely controlled by gradually increasing the laser power to 110 W and reducing the scanning speed to 170 mm/s. Furthermore, excessive laser power (>120 W) caused surface roughness, cavities and porous microstructure due to the extremely high energy input of the laser beam.

Originality/value

The SLM technique was used to produce Cu2O ceramic specimens. SLM of oxide ceramic became feasible using a slurry-based approach. The causes of several part defects such as spattering effect, crack initiation and propagation, the formation of porous microstructure, surface roughness and asymmetrical grain growth during the SLM of cuprous oxide (Cu2O) are thoroughly investigated.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 4 of 4