Search results

1 – 10 of 128
Article
Publication date: 8 April 2024

Fukang Yang, Wenjun Wang, Yongjie Yan and YuBing Dong

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to…

Abstract

Purpose

Polyethylene terephthalate (PET) as a fiber molding polymer is widely used in aerospace, electrical and electronic, clothing and other fields. The purpose of this study is to improve the thermal insulation performance of polyethylene terephthalate (PET), the SiO2 aerogel/PET composites slices and fibers were prepared, and the effects of the SiO2 aerogel on the morphology, structure, crystallization property and thermal conductivity of the SiO2 aerogel/PET composites slices and their fibers were systematically investigated.

Design/methodology/approach

The mass ratio of purified terephthalic acid and ethylene glycol was selected as 1:1.5, which was premixed with Sb2O3 and the corresponding mass of SiO2 aerogel, and SiO2 aerogel/PET composites were prepared by direct esterification and in-situ polymerization. The SiO2 aerogel/PET composite fibers were prepared by melt-spinning method.

Findings

The results showed that the SiO2 aerogel was uniformly dispersed in the PET matrix. The thermal insulation coefficient of PET was significantly reduced by the addition of SiO2 aerogel, and the thermal conductivity of the 1.0 Wt.% SiO2 aerogel/PET composites was reduced by 75.74 mW/(m · K) compared to the pure PET. The thermal conductivity of the 0.8 Wt.% SiO2 aerogel/PET composite fiber was reduced by 46.06% compared to the pure PET fiber. The crystallinity and flame-retardant coefficient of the SiO2 aerogel/PET composite fibers showed an increasing trend with the addition of SiO2 aerogel.

Research limitations/implications

The SiO2 aerogel/PET composite slices and their fibers have good thermal insulation properties and exhibit good potential for application in the field of thermal insulation, such as warm clothes. In today’s society where the energy crisis is becoming increasingly serious, improving the thermal insulation performance of PET to reduce energy loss will be of great significance to alleviate the energy crisis.

Originality/value

In this study, SiO2 aerogel/PET composite slices and their fibers were prepared by an in situ polymerization process, which solved the problem of difficult dispersion of nanoparticles in the matrix and the thermal conductivity of PET significantly reduced.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 September 2022

Hamed Al-sorory, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu…

Abstract

Purpose

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu (SAC355) solder alloys for high-performance applications.

Design/methodology/approach

The phase identification and morphology of the solders were studied using X-ray diffraction and scanning electron microscopy. Thermal parameters were investigated using differential scanning calorimetry. The elastic parameters such as Young's modulus (E) and internal friction (Q−1) were investigated using the dynamic resonance technique, whereas the Vickers hardness (Hv) and creep indentation (n) were examined using a Vickers microhardness tester.

Findings

Microstructural analysis revealed that ZnO nanoparticles (NPs) were distributed uniformly throughout the Sn matrix. Furthermore, addition of 0.1, 0.3 and 0.7 Wt.% of ZnO NPs to the eutectic (SAC355) prevented crystallite size reduction, which increased the strength of the solder alloy. Mechanical parameters such as Young's modulus improved significantly at 0.1, 0.3 and 0.7 Wt.% ZnO NP contents compared to the ZnO-free alloy. This variation can be understood by considering the plastic deformation. The Vickers hardness value (Hv) increased to its maximum as the ZnO NP content increased to 0.5. A stress exponent value (n) of approximately two in most composite solder alloys suggested that grain boundary sliding was the dominant mechanism in this system. The electrical resistance (ρ) increased its maximum value at 0.5 Wt.% ZnO NPs content. The addition of ZnO NPs to plain (SAC355) solder alloys increased the melting temperature (Tm) by a few degrees.

Originality/value

Development of eutectic (SAC355) lead-free solder doped with ZnO NPs use for electronic packaging.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 December 2023

Yuan Li, Yanzhi Xia, Min Li, Jinchi Liu, Miao Yu and Yutian Li

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric…

Abstract

Purpose

In this paper the aim is that Aramid/alginate blended nonwoven fabrics were prepared, and the flame retardancy of the blended nonwoven fabrics was studied by thermogravimetric analysis, vertical flame test, limiting oxygen index (LOI) and cone calorimeter test.

Design/methodology/approach

The advantages of different fibers can be combined by blending, and the defects may be remedied. The study investigates whether incorporating alginate fibers into aramid fibers can enhance the flame retardancy and reduce the smoke production of prepared aramid/alginate blended nonwoven fabrics.

Findings

Thermogravimetric analysis indicated that alginate fibers could effectively inhibit the combustion performance of aramid fibers at a higher temperature zone, leaving more residual chars for heat isolation. And vertical flame test, LOI and cone calorimeter test testified that the incorporation of alginate fibers improved the flame retardancy and fire behaviors. When the ratio of alginate fibers for aramid/alginate blended nonwoven fabrics reached 80%, the incorporation of alginate fibers could notably decreased peak-heat release rate (54%), total heat release (THR) (29%), peak-smoke production rate (93%) and total smoke production (86%). What is more, the lower smoke production rate and lower THR of the blends vastly reduced the risk of secondary injury in fires.

Originality/value

This study proposes to inhibit the flue gas release of aramid fiber and enhance the flame retardant by mixing with alginate fiber, and proposes that alginate fiber can be used as a biological smoke inhibitor, as well as a flame retardant for aramid fiber.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 December 2023

Austin R. Colon, David Owen Kazmer, Amy M. Peterson and Jonathan E. Seppala

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer…

Abstract

Purpose

A main cause of defects within material extrusion (MatEx) additive manufacturing is the nonisothermal condition in the hot end, which causes inconsistent extrusion and polymer welding. This paper aims to validate a custom hot end design intended to heat the thermoplastic to form a melt prior to the nozzle and to reduce variability in melt temperature. A full 3D temperature verification methodology for hot ends is also presented.

Design/methodology/approach

Infrared (IR) thermography of steady-state extrusion for varying volumetric flow rates, hot end temperature setpoints and nozzle orifice diameters provides data for model validation. A finite-element model is used to predict the temperature of the extrudate. Model tuning demonstrates the effects of different model assumptions on the simulated melt temperature.

Findings

The experimental results show that the measured temperature and variance are functions of volumetric flow rate, temperature setpoint and the nozzle orifice diameter. Convection to the surrounding air is a primary heat transfer mechanism. The custom hot end brings the melt to its setpoint temperature prior to entering the nozzle.

Originality/value

This work provides a full set of steady-state IR thermography data for various parameter settings. It also provides insight into the performance of a custom hot end designed to improve the robustness of melting in MatEx. Finally, it proposes a strategy for modeling such systems that incorporates the metal components and the air around the system.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 December 2022

Kaitlyn Gee, Suh In Kim, Haden Quinlan and A. John Hart

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine…

Abstract

Purpose

This study presents a framework to estimate throughput and cost of additive manufacturing (AM) as related to process parameters, material thermodynamic properties and machine specifications. Taking a 3D model of the part design as input, the model uses a parametrization of the rate-limiting physics of the AM build process – herein focusing on laser powder bed fusion (LPBF) and scaling of LPBF melt pool geometry – to estimate part- and material-specific build time. From this estimate, per-part cost is calculated using a quantity-dependent activity-based production model.

Design/methodology/approach

Analysis tools that assess how design variables and process parameters influence production cost increase our understanding of the economics of AM, thereby supporting its practical adoption. To this aim, our framework produces a representative scaling among process parameters, build rate and production cost.

Findings

For exemplary alloys and LPBF system specifications, predictions reveal the underlying tradeoff between production cost and machine capability, and look beyond the capability of currently commercially available equipment. As a proxy for build quality, the number of times each point in the build is re-melted is derived analytically as a function of process parameters, showcasing the tradeoff between print quality due to increased melting cycles, and throughput.

Originality/value

Typical cost models for AM only assess single operating points and are not coupled to models of the representative rate-limiting process physics. The present analysis of LPBF elucidates this important coupling, revealing tradeoffs between equipment capability and production cost, and looking beyond the limits of current commercially available equipment.

Details

Rapid Prototyping Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2023

Yang Yang, Weijing Zhang, Zheng Liu and Peihua Zhang

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Abstract

Purpose

The purpose of this work is to investigate the effect of filament composition with different specifications on the thermal comfort properties of bi-layer knitted fabrics.

Design/methodology/approach

In this paper eight bi-layer knitted fabrics with the same knitting structure but different filament compositions were prepared, and the thermal-wet comfort properties of these fabrics were examined. According to experimental data, the effect of filament composition on the thermal comfort properties of fabric was analyzed.

Findings

The increasing difference of hydrophilicity between inner and outer layers resulted in the enhancement of moisture management properties. Better thermal-physiology performance was exhibited by fabrics made up of finer and circular section fibers. Excellent thermal transfer, drying performance and one-way water transport capacity benefited the improvement of dynamic cooling effect of fabrics.

Originality/value

This work provides a useful and effective method for the development of bi-layer knitted fabric applied for sports and summer clothing.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 July 2023

A. Zeeshan, Muhammad Imran Khan, R. Ellahi and Zaheer Asghar

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN)…

Abstract

Purpose

This study aims to model the important flow response quantities over a shrinking wedge with the help of response surface methodology (RSM) and an artificial neural network (ANN). An ANN simulation for optimal thermal transport of incompressible viscous fluid under the impact of the magnetic effect (MHD) over a shrinking wedge with sensitivity analysis and optimization with RSM has yet not been investigated. This effort is devoted to filling the gap in existing literature.

Design/methodology/approach

A statistical experimental design is a setup with RSM using a central composite design (CCD). This setup involves the combination of values of input parameters such as porosity, shrinking and magnetic effect. The responses of skin friction coefficient and Nusselt number are required against each parameter combination of the experimental design, which is computed by solving the simplified form of the governing equations using bvp4c (a built-in technique in MATLAB). An empirical model for Cfx and Nux using RSM and ANN adopting the Levenberg–Marquardt algorithm based on trained neural networks (LMA-TNN) is attained. The empirical model for skin friction coefficient and Nusselt number using RSM has 99.96% and 99.99% coefficients of determination, respectively.

Findings

The values of these matrices show the goodness of fit for these quantities. The authors compared the results obtained from bvp4c, RSM and ANN and found them all to be in good agreement. A sensitivity analysis is performed, which shows that Cfx as well as Nux are most affected by porosity. However, they are least affected by magnetic parameters.

Originality/value

This study aims to simulate ANN and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 128