Search results

1 – 10 of over 1000
Article
Publication date: 26 June 2024

Tuan Anh Nguyen, Thi Thu Huong Tran and Thang Binh Hoang

This paper aims to design a PD controller for an active suspension system to improve the car’s moving smoothness.

Abstract

Purpose

This paper aims to design a PD controller for an active suspension system to improve the car’s moving smoothness.

Design/methodology/approach

The controller parameters are optimized by an in-loop genetic algorithm (iL-GA). Unlike previous studies that only used conventional GAs to tune coefficients for the controller, the iL-GA designed in this paper provides outstanding efficiency when determining the optimal value range for the system. The optimal value range of parameters is determined by the in-loop algorithm based on criteria related to systematic errors. The optimal values are then calculated by the GA based on this range instead of an uncertain one.

Findings

Simulation results show that vehicle body acceleration and displacement values are significantly reduced when using the active suspension system compared to the conventional passive suspension system. The phase difference phenomenon does not occur in the iL-GA situation. In addition, the frequency domain investigation also shows the system’s stability when using iL-GA instead of conventional GA.

Originality/value

To the best of the authors’ knowledge, this is a new application that provides positive effects to the suspension controller. This algorithm can be applied to tune coefficients for direct controllers in the future.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 July 2024

Zi Wang

This study examines two distinct bearing stiffness calculation methods, both of which are based on the displacement-load function. Previous research typically incorporated one…

Abstract

Purpose

This study examines two distinct bearing stiffness calculation methods, both of which are based on the displacement-load function. Previous research typically incorporated one type of bearing stiffness into their system mechanics or vibration analysis. However, these two methods of calculating stiffness lead to different vibration models. This implies that the choice for vibration investigation is not merely about selecting one of the two types of stiffness, but also about how to appropriately implement that chosen stiffness within a model. The primary objective of this work is to compare these two methods of bearing calculation and to discuss the suitable applications of each method in both static and dynamic analyses.

Design/methodology/approach

This study compares two distinct methods for calculating bearing stiffness. It explores the relationships between varying bearing stiffnesses, their internal structures, and contact features. Furthermore, it examines the impact of external loads on the static properties and dynamic characteristics of different bearing stiffnesses. Finally, based on the outcomes observed under various operating conditions, the study discusses the suitability of each method for static and dynamic analysis.

Findings

Mean stiffness is more suitable for calculating load transmissibility in a static state or capturing the delivery performance at instantaneous equilibrium positions in a dynamic state. Since the variation of the equilibrium positions is ignored, the alternating stiffness model is better suited for capturing the fluctuating properties of the vibration behaviors, especially under variable external load conditions.

Originality/value

We compare the two bearing calculation methods and discuss the appropriate applications of each method for static and dynamic analysis.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 July 2024

Yinsi Chen, Yuan Li, Heng Liu and Yi Liu

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Abstract

Purpose

The purpose of this study is to identify the dynamic parameters of journal bearings in asymmetric rotor systems without additional test runs or excitations.

Design/methodology/approach

An asymmetric rotor-bearing test rig was set up for the identification experiment. Comparations were made between the measured response of the asymmetric rotor and the symmetric rotor. The mathematical model of the asymmetric rotor is established by the finite element method. The identification algorithm is based on the model of the rotor and the measured vibration response to identify bearing parameters. The influence of modeling error and measurement noise on the identification results are numerically analyzed. The dynamic parameters of the journal bearings under different rotational speeds are identified and compared with the theoretical values calculated by the perturbation method.

Findings

The experiment results show that the vibration characteristics of the asymmetric rotor and the symmetric rotor are different. The numerical evaluation of the identification algorithm shows that the algorithm is accurate and has good robustness to modeling error and measurement noise. The identified dynamic parameters agree reasonably well with the parameters derived from the theoretical bearing model.

Originality/value

The proposed identification method uses the unique vibration characteristics of asymmetric rotors to identify the bearing dynamic parameters. As the method does not require excitations or additional test runs, it is suitable for the field test.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0096/

Details

Industrial Lubrication and Tribology, vol. 76 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 September 2024

Zhe Liu, Wenjing Zhang, Zhen Guo, Fang Yang, Heng Liu and Wei Chen

This paper aims to select an appropriate contact force model and apply it to the interaction model between the balls and the cage in the rolling bearings to describe the…

Abstract

Purpose

This paper aims to select an appropriate contact force model and apply it to the interaction model between the balls and the cage in the rolling bearings to describe the elastic–plastic collision phenomena between the two.

Design/methodology/approach

Taking the ball–disk collision mode as an example, several main contact force models were compared and analyzed through simulation and experiment. In addition, based on the consideration of yield strength of materials and initial collision velocity, a variable recovery coefficient model was proposed, and its validity and accuracy were verified by the ball–disk collision experiments. Then, respectively, the Flores model and the Hertz model were applied to the interaction between the balls and the cage, and the dynamics simulation results were compared.

Findings

The results indicate that the Flores model has good regression of recovery coefficient, indicating good applicability for both elastic and elastic–plastic contacts and can be applied to the contact collision situations of various materials. Under certain working conditions, there are significant differences in the dynamics results of rolling bearings simulated using the Flores model and Hertz model, respectively.

Originality/value

This paper applies the Flores model with variable recovery coefficients to the dynamics simulation analysis of ball bearings to solve the elastic–plastic collision problem between the rolling elements and the cage that cannot be reasonably handled by the Hertz model.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2024-0138/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 August 2023

Siva Sankara Rao Yemineni, Mallikarjuna Rao Kutchibotla and Subba Rao V.V.

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during…

Abstract

Purpose

This paper aims to analyze deeply the effect of surface roughness conditions of the common interface of the two-layered riveted cantilever beams on their frictional damping during free lateral vibration at first mode. Here, the product, (µ × α), and damping ratio, ξ, are the parameters whose variations are analyzed in this investigation. For this, the influencing parameters considered are the natural frequency of vibration, f; the amplitude of initial excitation, y; and surface roughness value, Ra.

Design/methodology/approach

For experimentally evaluating logarithmic damping decrement, d, the frequency response function analyzer for the case of free lateral vibrations was used. Later, for evaluating the product, µ × α (where µ is the kinematic coefficient of friction and α is the dynamic slip ratio), and then, the damping ratio, ξ, the empirical relation suggested for logarithmic damping decrement, d, of riveted cantilever beams was used. After this, the full and reduced quadratic models of the product, µ × α, ξ, response surface methodology (RSM) with the help of Design Expert 11 software was used. Corresponding main effects plots, surface plots and prediction comparison plots were obtained to observe the variations of the product, µ × α, ξ for the variations of influencing parameters: f, y and Ra. Finally, a machine learning technique such as artificial neural networks (ANNs) using “nntool” present in MATLAB R13a software was used to predict the ξ for the different combinations of f, y and Ra.

Findings

The full and reduced quadratic regression models for the product, (µ × α) and the damping ratio, ξ of riveted cantilever beams for free lateral vibrations of the first mode in terms of the parameters: f, y and Ra were obtained. In addition, the main effects plots, surface plots and prediction comparison plots for the product, µ × α, ξ, with the corresponding experimental values of the product, µ × α, ξ, were obtained. Also, the execution of ANNs using MATLAB R13a software is proved to be the more accurate tool for the prediction of damping ratios in comparison to quadratic regression equations obtained from Design Expert 11 software. In the end, the assumption that the effect of surface roughness value on the product, (µ × α), and the damping ratio, ξ, is negligible is proved to be true using the main effects plots for the product, (µ × α) and ξ obtained from the Design Expert 11 software.

Originality/value

Obtaining the full and reduced quadratic regression equations for the product, (µ × α), and ξ of the two-layered riveted cantilever beams in terms of parameters: f, y and Ra was done. In addition, the conditions for the corresponding minimum and maximum values of the product, (µ × α), and ξ were obtained. Later, the main effects plots, surface plots and comparison plots of the predicted product, (µ × α), and ξ versus experimental product, (µ × α), and ξ were also obtained. Finally, the predicted values of the product, (µ × α), and ξ using the ANNs tool are observed to be the more accurate values in comparison to that obtained from RSM using the Design Expert 11 software.

Article
Publication date: 25 July 2024

Meng Zhang

This study aims to propose a method for monitoring bearing health in the time–frequency domain, termed the Lock-in spectrum, to track the evolution of bearing faults over time and…

Abstract

Purpose

This study aims to propose a method for monitoring bearing health in the time–frequency domain, termed the Lock-in spectrum, to track the evolution of bearing faults over time and frequency.

Design/methodology/approach

The Lock-in spectrum uses vibration signals captured by vibration sensors and uses a lock-in process to analyze specified frequency bands. It calculates the distribution of signal amplitudes around fault characteristic frequencies over short time intervals.

Findings

Experimental results demonstrate that the Lock-in spectrum effectively captures the degradation process of bearings from fault inception to complete failure. It provides time-varying information on fault frequencies and amplitudes, enabling early detection of fault growth, even in the initial stages when fault signals are weak. Compared to the benchmark short-time Fourier transform method, the Lock-in spectrum exhibits superior expressive ability, allowing for higher-resolution, long-term monitoring of bearing condition.

Originality/value

The proposed Lock-in spectrum offers a novel approach to bearing health monitoring by capturing the dynamic evolution of fault frequencies over time. It surpasses traditional methods by providing enhanced frequency resolution and early fault detection capabilities.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 12 August 2024

Sławomir Szrama

This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern recognition but augmented with automated…

Abstract

Purpose

This study aims to present the concept of aircraft turbofan engine health status prediction with artificial neural network (ANN) pattern recognition but augmented with automated features engineering (AFE).

Design/methodology/approach

The main concept of engine health status prediction was based on three case studies and a validation process. The first two were performed on the engine health status parameters, namely, performance margin and specific fuel consumption margin. The third one was generated and created for the engine performance and safety data, specifically created for the final test. The final validation of the neural network pattern recognition was the validation of the proposed neural network architecture in comparison to the machine learning classification algorithms. All studies were conducted for ANN, which was a two-layer feedforward network architecture with pattern recognition. All case studies and tests were performed for both simple pattern recognition network and network augmented with automated feature engineering (AFE).

Findings

The greatest achievement of this elaboration is the presentation of how on the basis of the real-life engine operational data, the entire process of engine status prediction might be conducted with the application of the neural network pattern recognition process augmented with AFE.

Practical implications

This research could be implemented into the engine maintenance strategy and planning. Engine health status prediction based on ANN augmented with AFE is an extremely strong tool in aircraft accident and incident prevention.

Originality/value

Although turbofan engine health status prediction with ANN is not a novel approach, what is absolutely worth emphasizing is the fact that contrary to other publications this research was based on genuine, real engine performance operational data as well as AFE methodology, which makes the entire research very reliable. This is also the reason the prediction results reflect the effect of the real engine wear and deterioration process.

Article
Publication date: 27 August 2024

Linjie Dong, Renfei Zhang, Xiaohan Liu, Jie Li, Xingsong Wang and Tian Mengqian

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities…

Abstract

Purpose

Regular cable trench inspection is crucial, and robotics automation provides an efficient and safer alternative to manual labor. However, existing robots have limited capabilities in traversing obstacles and lack a mechanical arm for detecting cables and equipment. This study aims to develop an intelligent robot for cable trench inspection, enhancing obstacle-crossing abilities and incorporating a mechanical arm for inspection tasks.

Design/methodology/approach

This study presents an intelligent robot for cable trench inspection, featuring a six-degree-of-freedom mechanical arm mounted on a six-track chassis with four flippers. The robot's climbing and obstacle-crossing stability, as well as the motion range of the mechanical arm, are analyzed. The positioning, navigation and remote monitoring systems are developed. Experiments, including climbing and obstacle-crossing performance tests, along with navigation and positioning system tests, are conducted. Finally, the robot's practicability is verified through field testing.

Findings

Equipped with flipper tracks, the cable trench inspection robot can traverse obstacles up to 30 cm high and maintain stable locomotion on 30° slopes. Its navigation system enables autonomous operation, while the mechanical arm performs cable current detection tasks. The remote monitoring system provides comprehensive control of the robot and environmental parameter monitoring in cable trenches.

Originality/value

The front and rear flipper tracks enhance the robot's ability to traverse obstacles in cable trenches. The mechanical arm addresses cable current and equipment contact detection issues. The navigation and remote monitoring systems improve the robot's autonomous operation and environmental monitoring capabilities. Implementing this robot can advance the automation and intelligence of cable trench inspections.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 May 2022

Charlie Hopkin and Simon Lay

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the…

Abstract

Purpose

The proposed use of unlatched, reverse swing flappy doors is becoming widespread in the design of residential common corridor smoke control systems. This article explores the conceptual arguments for and against the use of these systems.

Design/methodology/approach

This article relies on industry experience, with reference to relevant building design practices, standards and research literature, to categorise arguments. These are collated into four common areas of concern relating to compartmentation, reliability, depressurisation and modelling practices. A final comparison is made between different common corridor smoke control system types for these four areas.

Findings

The article highlights several concerns around the use of flappy door systems, including the enforced breaches in stair compartmentation, uncertainties around system reliability, the reliance on door closers as a single point of failure, the impact of day-to-day building use on the system performance and the false confidence that modelling assessments can provide in demonstrating adequacy. The article concludes in suggesting that alternative smoke control options be considered in place of flappy door systems.

Originality/value

Discussion on the use of flappy door smoke control systems has been ongoing within the fire engineering community for several years, but there is limited public literature available on the topic. By collating the common arguments relating to these systems into a single article, a better understanding of their benefits and pitfalls has been provided for consideration by building design and construction professionals.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 7 August 2024

Kaveh Salmalian, Ali Alijani and Habib Ramezannejad Azarboni

In this research, the free vibration sensitivity analysis of cracked fiber metal laminated (FML) beams is investigated numerically and experimentally. The effects of single and…

Abstract

Purpose

In this research, the free vibration sensitivity analysis of cracked fiber metal laminated (FML) beams is investigated numerically and experimentally. The effects of single and double cracks on the frequency of the cantilever beams are simulated using the finite element method (FEM) and compared to the experimental results.

Design/methodology/approach

In FEM analysis, the crack defect is simulated by the contour integral technique without considering the crack growth. The specimens are fabricated with an aluminum sheet, woven carbon fiber and epoxy resin. The FML specimens are constructed by bonding five layers as [carbon fiber-epoxy/Al/carbon fiber-epoxy/Al/carbon fiber-epoxy]. First, the location and length of cracks are considered input factors for the frequency sensitivity analysis. Then, the design of the experiment is produced in the cases of single and double cracks to compute the frequency of the beams in the first and second modes using the FEM. The mechanical shaker is used to determine the natural frequency of the specimens. In addition, the predicted response values of the frequency for the beam are used to compare with the experimental results.

Findings

Consequently, the results of the sensitivity analysis demonstrate that the location and length of the crack have significant effects on the modes.

Originality/value

Effective interaction diagrams are introduced to investigate crack detection for input factors, including the location and length of cracks in the cases of single and double cracks.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 1000