Search results

1 – 10 of over 1000
Article
Publication date: 14 September 2023

Yongchang Jiang, Hejie Zhu and E. Bai

The existence of the advertising delay effect and its impact on supply chain operations have been demonstrated in the current study. Therefore, this study develops a timely…

Abstract

Purpose

The existence of the advertising delay effect and its impact on supply chain operations have been demonstrated in the current study. Therefore, this study develops a timely inventory control strategy for the fresh produce supply chain to address the advertising delay effect in the fresh produce supply chain.

Design/methodology/approach

This study proposes a game model based on the Nerlove-Arrow time delay differential equation and Pontryagin's maximum principle. Through comparative analyses of the optimal equilibrium strategies, the authors compare the optimal equilibrium strategies, product goodwill and optimal inventory trajectories for suppliers and retailers under secondary replenishment decisions and decentralized decisions.

Findings

The authors find that (1) Only when the sales cycle meets certain conditions can the overall profit of the supply chain under the secondary replenishment decision be greater than that under the decentralized decision. As the price markup coefficient increases, the total profit of the supply chain first increases and then decreases. (2) With the increase in the delay time, the replenishment quantity during the initial period gradually decreases. After the delay time elapses, the inventory depletion rate under secondary replenishment decisions is faster than that under decentralized decision-making. (3) Although there is a continuously increasing maximum value of product goodwill with the increase in delay time, it becomes difficult to achieve this value for longer delays.

Practical implications

The authors’ findings provide a theoretical basis for supply chain members of fresh agricultural products to select replenishment and inventory control strategies when adopting different levels of delay in advertising marketing.

Originality/value

Firstly, this paper explains the impact of advertising delay effect on fresh produce supply chain from a dynamic perspective, and secondly, it provides guidance on advertising formulation and inventory replenishment for fresh produce retailers under the influence of advertising delay effect.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 15 February 2024

Makutla Gibson Mojapelo

The purpose of this study was to investigate a framework for the implementation of freedom of information (FOI) legislation in South Africa, against Article 19’s nine principles…

Abstract

Purpose

The purpose of this study was to investigate a framework for the implementation of freedom of information (FOI) legislation in South Africa, against Article 19’s nine principles of FOI legislation.

Design/methodology/approach

This qualitative study used semi-structured interviews to collect data from six experts selected by means of the snowball sampling technique and content analysis. The study used a modified Delphi design consisting of two rounds of interviews.

Findings

The results showed that little effort is made by government officials to demonstrate commitment to the implementation of FOI legislation.

Practical implications

The passing of FOI is expected to reduce corruption, increase public participation, reduce the level of secrecy and increase transparency and openness. This is not the case as the implementation of this socioeconomic right in South Africa is faced by numerous challenges, such as a lack of political will, secrecy laws providing for the opposite of what the FOI legislation seeks to achieve, poor legislative interpretation and a lack of clear policies. The study proposes a framework aimed at addressing these challenges.

Originality/value

The study provides a framework for the implementation of FOI legislation. The framework was developed under the guidance of Article 19 principles of freedom of information legislation.

Details

Information Discovery and Delivery, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-6247

Keywords

Article
Publication date: 8 May 2024

Lu Xu, Shuang Cao and Xican Li

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the…

Abstract

Purpose

In order to explore a new estimation approach of hyperspectral estimation, this paper aims to establish a hyperspectral estimation model of soil organic matter content with the principal gradient grey information based on the grey information theory.

Design/methodology/approach

Firstly, the estimation factors are selected by transforming the spectral data. The eigenvalue matrix of the modelling samples is converted into grey information matrix by using the method of increasing information and taking large, and the principal gradient grey information of modelling samples is calculated by using the method of pro-information interpolation and straight-line interpolation, respectively, and the hyperspectral estimation model of soil organic matter content is established. Then, the positive and inverse grey relational degree are used to identify the principal gradient information quantity of the test samples corresponding to the known patterns, and the cubic polynomial method is used to optimize the principal gradient information quantity for improving estimation accuracy. Finally, the established model is used to estimate the soil organic matter content of Zhangqiu and Jiyang District of Jinan City, Shandong Province.

Findings

The results show that the model has the higher estimation accuracy, among the average relative error of 23 test samples is 5.7524%, and the determination coefficient is 0.9002. Compared with the commonly used methods such as multiple linear regression, support vector machine and BP neural network, the hyperspectral estimation accuracy of soil organic matter content is significantly improved. The application example shows that the estimation model proposed in this paper is feasible and effective.

Practical implications

The estimation model in this paper not only fully excavates and utilizes the internal grey information of known samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a new hyperspectral estimation model of soil organic matter content based on the principal gradient grey information and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 19 October 2023

Mohamed Saad Bajjou and Anas Chafi

Lean construction (LC) consists of very effective techniques; however, its implementation varies considerably from one industry to another. Although numerous lean initiatives do…

Abstract

Purpose

Lean construction (LC) consists of very effective techniques; however, its implementation varies considerably from one industry to another. Although numerous lean initiatives do exist in the construction industry, the research topic related to LC implementation is still unexplored due to the scarcity of validated assessment frameworks. This study aims to provide the first attempt in developing a structural model for successful LC implementation.

Design/methodology/approach

This study developed a Lean construction model (LCM) by critically reviewing seven previous LC frameworks from different countries, defining 18 subprinciples grouped into 6 major principles and formulating testable hypotheses. The questionnaire was pre-tested with 12 construction management experts and revised by 4 specialized academics. A pilot study with 20 construction units enhanced content reliability. Data from 307 Moroccan construction companies were collected to develop a measurement model. SPSS V. 26 was used for Exploratory Factor Analysis, followed by confirmatory factor analysis using AMOS version 23. Finally, a structural equation model statistically assessed each construct's contribution to the success of LC implementation.

Findings

This work led to the development of an original LCM based on valid and reliable LC constructs, consisting of 18 measurement items grouped into 6 LC principles: Process Transparency, People involvement, Waste elimination, Planning and Continuous improvement, Client Focus and Material/information flow and pull. According to the structural model, LC implementation success is positively influenced by Planning and Scheduling/continuous improvement (β = 0.930), followed by Elimination of waste (β = 0.896). Process transparency ranks third (β = 0.858). The study demonstrates that all these factors are mutually complementary, highlighting a positive relationship between LC implementation success and the holistic application of all LC principles.

Originality/value

To the best of the authors’ knowledge, this study is the first attempt to develop a statistically proven model of LC based on structural equation modelling analysis, which is promising for stimulating construction practitioners and researchers for more empirical studies in different countries to obtain a more accurate reflection of LC implementation. Moreover, the paper proposes recommendations to help policymakers, academics and practitioners anticipate the key success drivers for more successful LC implementation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 April 2023

Jeen Guo, Pengcheng Xiang, Qiqi Liu and Yun Luo

The purpose of this paper is to propose a method that can calculate the transportation infrastructure network service capacity enhancement given by planned transportation…

Abstract

Purpose

The purpose of this paper is to propose a method that can calculate the transportation infrastructure network service capacity enhancement given by planned transportation infrastructure projects construction. Managers can sequence projects more rationally to maximize the construction effectiveness of infrastructure investments.

Design/methodology/approach

This paper designed a computational network simulation software to generate topological networks based on established rules. Based on the topological networks, the software simulated the movement path of users and calculated the average travel time. This software allows the adjustment of parameters to suit different research objectives. The average travel time is used as an evaluation index to determine the most appropriate construction sequence.

Findings

In this paper, the transportation infrastructure network of Sichuan Province in China was used to demonstrate this software. The average travel time of the existing transportation network in Sichuan Province was calculated as 211 min using this software. The high-speed railways from Leshan to Xichang and from Xichang to Yibin had the greatest influence on shortening the average travel time. This paper also measured the changes in the average travel time under two strategies: shortening the maximum and minimum priorities. All the transportation network optimisation plans for Sichuan Province will be somewhere between these two strategies.

Originality/value

The contribution of this research are three aspects: First, a complex network analysis method that can take into account the differences of node elements is proposed. Second, it provides an effective tool for decision makers to plan transportation infrastructure construction. Third, the construction sequence of transportation infrastructure development plan can effect the infrastructure investment effectiveness.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 April 2024

Stefano Costa, Eugenio Costamagna and Paolo Di Barba

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other…

Abstract

Purpose

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.

Design/methodology/approach

First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.

Findings

AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.

Research limitations/implications

AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.

Originality/value

The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 18 April 2023

Iman Youssefi and Tolga Celik

Total risk score (TRS) is considered one of the main indicators for risk evaluation. Several studies attempted to employ different types of risk indices for the evaluation of cost…

Abstract

Purpose

Total risk score (TRS) is considered one of the main indicators for risk evaluation. Several studies attempted to employ different types of risk indices for the evaluation of cost overrun causes. Hence, this study aims at performing a comparative analysis to evaluate the efficiency of three different approaches for TRS calculation.

Design/methodology/approach

Thirty-eight unique causes of cost overrun in urban-related construction projects were identified and a survey was conducted among construction professionals in Iran. The TRS for each cost overrun cause is calculated using single-attribute (SA), double-attribute (DA), and multiple-attribute (MA) approaches, and eventually, causes were ranked. Furthermore, principal component analysis (PCA), logistic regression analysis (LRA), and K-means clustering are utilized to compare the differences in the generated TRS using different approaches.

Findings

The results revealed that the TRS generated through the MA approach demonstrated the highest efficiency in terms of generating correlation between causes and their identified latent constructs, prediction capability, and classification of the influential causes in the same group.

Originality/value

The originality of this study primarily stems from the adoption of statistical approaches in the evaluation of the recently introduced TRS calculation approach in comparison to traditional ones. Additionally, this study proposed a modified application of the relative importance index (RII) for risk prioritization. The results from this study are expected to fulfill the gap in previous literature toward exploring the most efficient TRS calculation approach for those researchers and practitioners who seek to utilize them as a measure to identify the influential cost overrun causes.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 March 2024

Juan Pedro Mellinas, Jacques Bulchand-Gidumal and María-del-Carmen Alarcón-del-Amo

This paper aims to classify tourist accommodation using data from Booking.com and TripAdvisor and analyse the extent to which the different segments identified differ in terms of…

Abstract

Purpose

This paper aims to classify tourist accommodation using data from Booking.com and TripAdvisor and analyse the extent to which the different segments identified differ in terms of being adults-only.

Design/methodology/approach

In total, 1,535 properties located in nine Spanish sun and beach destinations were examined using a latent class cluster analysis (LCCA). The bias-adjusted three-step approach was used to investigate the differences between belonging to adults-only accommodation or not among the identified clusters.

Findings

Results show that adults-only accommodation tends to belong to the cluster with higher online ratings. In small Spanish islands, adults-only hotels account for a large share (more than 25%) of hotels.

Research limitations/implications

It was not possible to analyse whether the higher rating was due to the accommodation being better or due to the tourists being more satisfied with their stay.

Practical implications

In urban destinations, the model is not widely used. However, in coastal destinations, it is becoming more than a novelty or a new trend.

Social implications

In small Spanish islands, people traveling with children are becoming a minority. Families may feel discriminated against and express dissatisfaction with this situation in the future.

Originality/value

This study covers the gap in the academic literature on this growing hotel segment.

Details

Consumer Behavior in Tourism and Hospitality, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2752-6666

Keywords

Article
Publication date: 22 August 2023

Ulrich Schmelzle, Daniel A. Pellathy, Wendy L. Tate and Junhong Min

Organizations increasingly manage innovation projects jointly with suppliers to use external resources to fill internal competencies. However, little is known about the practices…

Abstract

Purpose

Organizations increasingly manage innovation projects jointly with suppliers to use external resources to fill internal competencies. However, little is known about the practices of how companies configure internal and external resources to enhance competitiveness. Drawing on resource orchestration theory, this study aims to propose a novel approach to explain organizational performance using purchasing orchestration (PO) as an antecedent. The paper then tests an empirical model to assess the impact of PO practices on innovation and financial performance.

Design/methodology/approach

Cross-sectional survey data from 247 supply chain managers are used to test hypotheses relating PO to performance. SPSS PROCESS is applied to test conditional direct and indirect effects.

Findings

The positive impact of PO practices on innovation and financial performance is confirmed. Results indicate an organization’s entrepreneurial orientation (EO) can strengthen the positive relationship between PO and financial performance. Structuring, bundling and leveraging external resources are introduced as new organizational capabilities.

Research limitations/implications

This research is based on cross-sectional data, and unidimensional constructs are used.

Practical implications

This research guides managers on the innovation process in light of the growing importance of external resources. The manuscript highlights the role of strategic purchasing in establishing new resource capabilities as a competitive advantage.

Originality/value

This research provides new insights into the relationship between purchasing practices and organizational performance and helps better understand the implications of orchestrating supply chain resources. A novel construct, PO, is introduced as a theoretical basis for studying supply chain-enabled innovation.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 1000