Search results

1 – 10 of 33
Article
Publication date: 17 May 2024

Aun Haider

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to…

Abstract

Purpose

This paper aims to comprehensively explore techniques for reducing solution time in finite element analysis (FEA), addressing the critical need for expediting computations to facilitate agile design exploration within project timelines.

Design/methodology/approach

Drawing from a wide array of literature sources, this paper synthesizes and analyzes various methodologies used to enhance the efficiency of FEA. Techniques are scrutinized in terms of their applicability, effectiveness and potential limitations.

Findings

The review signifies application of linear assumptions across multiple facets of analysis and delves into matrix order reduction strategies, geometry simplification, symmetry exploitation, submodeling and mesh attribute control. It reveals how these techniques can effectively reduce computational burdens while maintaining acceptable levels of accuracy.

Research limitations/implications

While this review provides a comprehensive overview of existing efficiency enhancement techniques in FEA, it acknowledges inherent limitations of any synthesis-based study. Future research should focus on refining these methodologies.

Practical implications

The insights provided in this paper offer practical guidance for structural engineers and researchers seeking to optimize FEA workflows. By implementing these techniques, practitioners can expedite solution times and enhance their ability to explore design alternatives efficiently ultimately leading to cost savings and more robust structures.

Originality/value

This review contributes to the existing literature by offering a comprehensive synthesis of efficiency enhancement techniques in FEA. By highlighting the originality and value of each discussed methodology, this paper provides a roadmap for future research and practical implementation in the field of structural engineering.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 June 2024

Chao Yan and Lianghui Tu

Since the inception of aircraft, the phenomenon of spin has persistently accompanied aircraft, and research into spin has been ongoing. This paper aims to introduce an…

Abstract

Purpose

Since the inception of aircraft, the phenomenon of spin has persistently accompanied aircraft, and research into spin has been ongoing. This paper aims to introduce an optimization technique to enhance the traditional geometric method for predicting steady spin, aiming to achieve more precise predictive outcomes.

Design/methodology/approach

To begin with, the force and moment equations used for motion analysis are initially presented, followed by the establishment of the motion model. Subsequently, the forward problem is set up, and the equilibrium solutions for the left and right spins of the aircraft are determined using the geometric method under the basic and wingtip configurations, thus solving the forward problem. In the final stage, nonlinear inversion is applied, and the inversion objective function is formulated based on the least squares approach. Through iterative processes, the measured data are interpolated, leading to the acquisition of the accurate equilibrium solution.

Findings

The findings indicate that the utilization of the nonlinear iterative inversion algorithm has effectively optimized the geometric method, yielding favorable outcomes. Postoptimization, the prediction accuracy has been enhanced, and the error has significantly diminished when compared to the preoptimization results.

Originality/value

The nonlinear inversion algorithm is used to refine the steady spin prediction for general aviation aircraft. This approach significantly mitigates the precision issues inherent in the forward problem. As demonstrated through the simulations provided, the application of the nonlinear iterative algorithm to resolve the inversion function yields promising optimization outcomes.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 August 2024

Mariano Tomás Fernandez, Sergio Zlotnik and Pedro Diez

This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.

Abstract

Purpose

This paper aims to provide a method for obtaining physically sound temperature fields to be used in geophysical inversions in the presence of immersed essential conditions.

Design/methodology/approach

The method produces a thermal field in agreement with a given location of the interface between the Lithosphere and Asthenosphere. It leverages the known location of the interface to enforce the location of a given isotherm while relaxing other constraints known with less precision. The method splits the domain: in the Lithosphere the solution is immediately obtained by standard procedures, while in the Asthenosphere a minimization problem is solved to fulfill continuity of temperatures (strongly imposed) and fluxes at the interface (weakly imposed).

Findings

The numerical methodology, based on the relaxation of the bottom fluxes, correctly recovers the thermal field in the complete domain. To obtain bottom fluxes following geophysical expected values, a constrained minimization strategy is required. The sensitivity of the method could be improved by relaxing other quantities such as lateral fluxes or mantle velocities.

Originality/value

A statement of the energy balance problem in terms of a known immersed condition is presented. A novel numerical procedure based on a domain-splitting strategy allows the solution of the problem. The procedure is tailored to be used within geophysical inversions and provides physically sound solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 July 2024

Xiaolong Lyu, Dan Huang, Liwei Wu and Ding Chen

Parameter estimation in complex engineering structures typically necessitates repeated calculations using simulation models, leading to significant computational costs. This paper…

Abstract

Purpose

Parameter estimation in complex engineering structures typically necessitates repeated calculations using simulation models, leading to significant computational costs. This paper aims to introduce an adaptive multi-output Gaussian process (MOGP) surrogate model for parameter estimation in time-consuming models.

Design/methodology/approach

The MOGP surrogate model is established to replace the computationally expensive finite element method (FEM) analysis during the estimation process. We propose a novel adaptive sampling method for MOGP inspired by the traditional expected improvement (EI) method, aiming to reduce the number of required sample points for building the surrogate model. Two mathematical examples and an application in the back analysis of a concrete arch dam are tested to demonstrate the effectiveness of the proposed method.

Findings

The numerical results show that the proposed method requires a relatively small number of sample points to achieve accurate estimates. The proposed adaptive sampling method combined with the MOGP surrogate model shows an obvious advantage in parameter estimation problems involving expensive-to-evaluate models, particularly those with high-dimensional output.

Originality/value

A novel adaptive sampling method for establishing the MOGP surrogate model is proposed to accelerate the procedure of solving large-scale parameter estimation problems. This modified adaptive sampling method, based on the traditional EI method, is better suited for multi-output problems, making it highly valuable for numerous practical engineering applications.

Details

Engineering Computations, vol. 41 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 April 2023

Amina Zahafi, Mohamed Hadid and Raouf Bencharif

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a…

Abstract

Purpose

A newly developed frequency-independent lumped parameter model (LPM) is the purpose of the present paper. This new model’s direct outcome ensures high efficiency and a straightforward calculation of foundations’ vertical vibrations. A rigid circular foundation shape resting on a nonhomogeneous half-space subjected to a vertical time-harmonic excitation is considered.

Design/methodology/approach

A simple model representing the soil–foundation system consists of a single degree of freedom (SDOF) system incorporating a lumped mass linked to a frequency-independent spring and dashpot. Besides that, an additional fictitious mass is incorporated into the SDOF system. Several numerical methods and mathematical techniques are used to identify each SDOF’s parameter: (1) the vertical component of the static and dynamic foundation impedance function is calculated. This dynamic interaction problem is solved by using a formulation combining the boundary element method and the thin layer method, which allows the simulation of any complex nonhomogeneous half-space configuration. After, one determines the static stiffness’s expression of the circular foundation resting on a nonhomogeneous half-space. (2) The system’s parameters (dashpot coefficient and fictitious mass) are calculated at the resonance frequency; and (3) using a curve fitting technique, the general formulas of the frequency-independent dashpot coefficients and additional fictitious mass are established.

Findings

Comparisons with other results from a rigorous formulation were made to verify the developed model’s accuracy; these are exceptional cases of the more general problems that can be addressed (problems like shallow or embedded foundations of arbitrary shape, other vibration modes, etc.).

Originality/value

In this new LPM, the impedance functions will no longer be needed. The engineer only needs a limited number of input parameters (geometrical and mechanical characteristics of the foundation and the soil). Moreover, a simple calculator is required (i.e. we do not need any sophisticated software).

Details

World Journal of Engineering, vol. 21 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 June 2024

Huiyunuo Xiao, Ziyang Zhen, Zhibing Zhang and Fengying Zheng

This paper aims to propose the automatic carrier landing system with the fault-tolerant ability for carrier-based aircraft in the presence of deck motion, external airwake…

Abstract

Purpose

This paper aims to propose the automatic carrier landing system with the fault-tolerant ability for carrier-based aircraft in the presence of deck motion, external airwake disturbance and actuator fault, which consists of the reference trajectory generation module and flight control module.

Design/methodology/approach

The longitudinal and lateral basic controllers are designed based on the optimal preview control (OPC), which can ensure favorable tracking performance and anti-disturbance ability of system. Furthermore, based on the OPC, the robust fault-tolerant preview control scheme is proposed to attenuate the impact of actuator fault on system, which ensures the safe landing of carrier-based aircraft in case of actuator failure.

Findings

Both the Lyapunov method and simulations prove that the tracking errors can converge to zero and system states can be asymptotically stable both in normal and fault operations.

Originality/value

The fault-tolerant control strategy is introduced into preview control to deal with actuator fault, which combines feedforward control based on future previewable information and feedback control based on current information to improve the system performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 May 2024

Qiang Yang, Tianfei Xia, Lijia Zhang, Ziye Zhou, Dequan Guo, Ao Gu, Xucai Zeng and Ping Wang

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an…

Abstract

Purpose

The purpose of this paper is to use the corresponding magnetic sensor and detection method to detect and image the defects of small diameter pipelines. Urban gas pipeline is an energy transportation tool for urban industrial production and social life, which is closely related to urban safety. Preventing the occurrence of urban gas pipeline transportation accidents and carrying out pipeline defect detection are of great significance for the urban economic and social stability. To perform pipeline defect detection, the magnetic flux leakage internal detection method is generally used in the detection of large-diameter long-distance oil and gas pipelines. However, in terms of the internal detection of small-diameter pipelines, due to the heavy weight, large structure of the detection device and small pipe diameter, the detection is more difficult.

Design/methodology/approach

In order to solve the above matters, self-made three-dimensional magnetic sensor and three-dimensional magnetic flux leakage imaging direct method are proposed for studying the defect identification. Firstly, for adapting to the diameter range of small-diameter pipelines, and containing the complete information of the defect, a self-made three-dimensional magnetic sensor is made in this paper to improve the accuracy of magnetic flux leakage detection. And on the basis of it, a small diameter pipeline defect detection system is built. Secondly, as detection signal may be affected by background magnetic field interference and the jitter interference, the complete ensemble empirical mode decomposition with adaptive noise method is utilized to screen the detected signal. As a result, the useful signal is reconstructed and the interference signal is removed. Finally, the defect contour inversion imaging of detection is realized based on the direct method of three-dimensional magnetic flux leakage imaging, which includes three-dimensional magnetic flux leakage detection data and data segmentation recognition.

Findings

The three-dimensional magnetic flux leakage imaging experimental results shown that, compared to the actual defects, the typical defects, irregular defects and crack groove defects can be analyzed by the magnetic flux leakage defect contour imaging method in qualitative and quantitative way respectively, which provides a new idea for the research of defect recognition.

Originality/value

A three-dimensional magnetic sensor is made to adapt the diameter range of small diameter pipeline, and based on it, a small-diameter pipeline defect detection system is built to collect and display the magnetic flux leakage signal.

Article
Publication date: 25 February 2021

Sudipta Ghosh, P. Venkateswaran and Subir Kumar Sarkar

High packaging density in the present VLSI era builds an acute power crisis, which limits the use of MOSFET device as a constituent block in CMOS technology. This leads…

Abstract

Purpose

High packaging density in the present VLSI era builds an acute power crisis, which limits the use of MOSFET device as a constituent block in CMOS technology. This leads researchers in looking for alternative devices, which can replace the MOSFET in CMOS VLSI logic design. In a quest for alternative devices, tunnel field effect transistor emerged as a potential alternative in recent times. The purpose of this study is to enhance the performances of the proposed device structure and make it compatible with circuit implementation. Finally, the performances of that circuit are compared with CMOS circuit and a comparative study is made to find the superiority of the proposed circuit with respect to conventional CMOS circuit.

Design/methodology/approach

Silicon–germanium heterostructure is currently one of the most promising architectures for semiconductor devices such as tunnel field effect transistor. Analytical modeling is computed and programmed with MATLAB software. Two-dimensional device simulation is performed by using Silvaco TCAD (ATLAS). The modeled results are validated through the ATLAS simulation data. Therefore, an inverter circuit is implemented with the proposed device. The circuit is simulated with the Tanner EDA tool to evaluate its performances.

Findings

The proposed optimized device geometry delivers exceptionally low OFF current (order of 10^−18 A/um), fairly high ON current (5x10^−5 A/um) and a steep subthreshold slope (20 mV/decade) followed by excellent ON–OFF current ratio (order of 10^13) compared to the similar kind of heterostructures. With a very low threshold voltage, even lesser than 0.1 V, the proposed device emerged as a good replacement of MOSFET in CMOS-like digital circuits. Hence, the device is implemented to construct a resistive inverter to study the circuit performances. The resistive inverter circuit is compared with a resistive CMOS inverter circuit. Both the circuit performances are analyzed and compared in terms of power dissipation, propagation delay and power-delay product. The outcomes of the experiments prove that the performance matrices of heterojunction Tunnel FET (HTFET)-based inverter are way ahead of that of CMOS-based inverter.

Originality/value

Germanium–silicon HTFET with stack gate oxide is analytically modeled and optimized in terms of performance matrices. The device performances are appreciable in comparison with the device structures published in contemporary literature. CMOS-like resistive inverter circuit, implemented with this proposed device, performs well and outruns the circuit performances of the conventional CMOS circuit at 45-nm technological node.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 17 May 2024

Ya Bu, Xinghui Yu and Hui Li

The paper aims to examine the digital economy's influence on China's regional innovation and development. It focuses on direct effects and spatial spillover across regions, and…

Abstract

Purpose

The paper aims to examine the digital economy's influence on China's regional innovation and development. It focuses on direct effects and spatial spillover across regions, and the mediating role of human capital. This analysis is vital for policy and strategic planning in the digital era.

Design/methodology/approach

This study uses panel data from 30 Chinese provinces (2004–2019) and uses the entropy method to quantify the digital economy's development. It investigates its impact on regional innovation using a dynamic spatial Durbin model (SDM) and mediation effect model, assessing direct effects, spatial spillover and human capital's mediating role. Various control variables are included for comprehensive analysis.

Findings

Findings show the digital economy significantly boosts regional innovation, acting as a growth driver. However, impacts vary regionally, with the central region gaining more than the eastern and western areas. Spatial spillover effects are mixed, showing negative short-term and positive long-term impacts under different weight matrices. Human capital is crucial for fostering innovation through the digital economy.

Originality/value

The paper offers unique insights into the spatial dynamics of the digital economy's impact on regional innovation in China. It advances understanding of the digital economy's role in regional development using innovative methods like the entropy method and dynamic SDM. Highlighting human capital as a key mediating factor enriches discussions on digital economy strategies for regional innovation.

Details

Digital Policy, Regulation and Governance, vol. 26 no. 5
Type: Research Article
ISSN: 2398-5038

Keywords

Article
Publication date: 10 May 2024

Xiao Xiao, Andreas Christian Thul, Lars Eric Müller and Kay Hameyer

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic…

Abstract

Purpose

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic hysteresis remains a challenging task that is yet to be fully resolved. The purpose of this paper is to study vector hysteresis play models for anisotropic ferromagnetic materials in a physical, thermodynamical approach.

Design/methodology/approach

In this work, hysteresis play models are implemented to interpret magnetic properties, drawing upon classical rate-independent plasticity principles derived from continuum mechanics theory. By conducting qualitative and quantitative verification and validation, various aspects of ferromagnetic vector hysteresis were thoroughly examined. By directly incorporating the hysteresis play models into the primal formulations using fixed point method, the proposed model is validated with measurements in a finite element (FE) environments.

Findings

The proposed vector hysteresis play model is verified with fundamental properties of hysteresis effects. Numerical analysis is performed in an FE environment. Measured data from a rotational single sheet tester (RSST) are validated to the simulated results.

Originality/value

The results of this work demonstrates that the essential properties of the hysteresis effects by electrical steel sheets can be represented by the proposed vector hysteresis play models. By incorporation of hysteresis play models into the weak formulations of the magnetostatic problem in the h-based magnetic scalar potential form, magnetic properties of electrical steel sheets can be locally analyzed and represented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 33