Search results

1 – 10 of 956
Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 May 2023

Yixuan Xue, Ziyang Zhen, Zhibing Zhang, Teng Cao and Tiancai Wan

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller…

Abstract

Purpose

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller that can simultaneously deal with external disturbance, structure fault and actuator fault.

Design/methodology/approach

The automatic carrier landing task is resolved into the glide path tracking problem and attitude tracking problem. The disturbance observer-based adaptive sliding mode control scheme is proposed for system stabilization, disturbance rejection and fault tolerance.

Findings

Both the Lyapunov method and exemplary simulations can prove that the disturbance estimation error and the attitude tracking error converge in finite time in the presence of external disturbances and various faults.

Practical implications

The presented algorithm is testified by a UAV automatic carrier landing simulation, which shows the potential of practical usage.

Originality/value

The barrier function is introduced to adaptively update both the sliding mode observer gain and sliding mode controller gain, so that the sliding mode surface could converge to a predefined region without overestimation. The proposed flight controller ensures a secure carrier landing task.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 April 2020

Lipeng Wang, Zhi Zhang, Qidan Zhu and Xingwei Jiang

This paper aims to propose a novel model predictive control (MPC) with time varying weights to develop a lateral control law in an automatic carrier landing system (ACLS), which…

Abstract

Purpose

This paper aims to propose a novel model predictive control (MPC) with time varying weights to develop a lateral control law in an automatic carrier landing system (ACLS), which minimizes landing risk and improves flight quality.

Design/methodology/approach

First, a nonlinear mathematic model of an F/A-18 aircraft during lateral landing is established. Then the landing model is linearized in the form of state deviations on the equilibrium points. Second, landing risk windows are proposed and a high-dimensional landing risk model is addressed through a back propagation (BP) neural network. The trained samples are acquired based on a pilot behavior model. Third, time varying weights created from the lateral landing risk are introduced into the performance function of MPC. Optimal solution is solved quicker and some state deviations are focused on and eliminated. Fourth, the algebraic inequalities are substituted by the linear matrix inequalities (LMIs), which are easily calculated by the computers.

Findings

On a semi-physical platform, the proposed method compares with a traditional MPC algorithm and a modified MPC with an additional term. The test results indicate that the proposed algorithm brings about an excellent landing performance as well as an ability of eliminating landing risk.

Practical implications

The landing phase of a carrier-based aircraft is one of the most dangerous and complicated stages, and the algorithm proposed by this paper plays a vital role in the lateral landing.

Originality/value

This paper establishes a lateral landing risk model, which considers not only the current landing state but also the future touchdown point. This lateral landing risk is integrated into the time varying weights of the MPC algorithm so that the state deviations and landing risk can be both reduced in the rolling optimization.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 June 2021

Ajeet Kumar Bhatia, Jiang Ju, Zhen Ziyang, Nigar Ahmed, Avinash Rohra and Muhammad Waqar

The purpose of this paper is to design an innovative autonomous carrier landing system (ACLS) using novel robust adaptive preview control (RAPC) method, which can assure safe and…

Abstract

Purpose

The purpose of this paper is to design an innovative autonomous carrier landing system (ACLS) using novel robust adaptive preview control (RAPC) method, which can assure safe and successful autonomous carrier landing under the influence of airwake disturbance and irregular deck motion. To design a deck motion predictor based on an unscented Kalman filter (UKF), which predicts the touchdown point, very precisely.

Design/methodology/approach

An ACLS is comprising a UKF based deck motion predictor, a previewable glide path module and a control system. The previewable information is augmented with the system and then latitude and longitudinal controllers are designed based on the preview control scheme, in which the robust adaptive feedback and feedforward gain’s laws are obtained through Lyapunov stability theorem and linear matrix inequality approach, guarantying the closed-loop system’s asymptotic stability.

Findings

The autonomous carrier landing problem is solved by proposing robust ACLS, which is validated through numerical simulation in presence of sea disturbance and time-varying external disturbances.

Practical implications

The ACLS is designed considering the practical aspects of the application, presenting superior performance with extended robustness.

Originality/value

The novel RAPC, relative motion-based guidance system and deck motion compensation mechanism are developed and presented, never been implemented for autonomous carrier landing operations.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 May 2022

Syed Awais Ali Shah, Bingtuan Gao, Ajeet Kumar Bhatia, Chuande Liu and Arshad Rauf

Barge-type offshore floating wind turbine (OFWT) commonly exhibits an under-actuated phenomenon in an offshore environment, which leads to a potential vibration-damping hazard…

Abstract

Purpose

Barge-type offshore floating wind turbine (OFWT) commonly exhibits an under-actuated phenomenon in an offshore environment, which leads to a potential vibration-damping hazard. This article aims to provide a new robust output feedback anti-vibrational control scheme for the novel translational oscillator with rotational actuator (TORA) based five-degrees of freedom (5-DOF) barge-type OFWT in the presence of unwanted disturbances and modeling uncertainties.

Design/methodology/approach

In this paper, an active control technique called TORA has been used to design a 5-DOF barge-type OFWT model, where the mathematical model of the proposed system is derived by using Euler–Lagrange's equations. The robust hierarchical backstepping integral nonsingular terminal sliding mode control (HBINTSMC) with an adaptive gain is used in conjunction with extended order high gain observer (EHGO) to achieve system stabilization in the presence of unwanted disturbances and modeling uncertainties. The numerical simulations based on MATLAB/SIMULINK have been performed to demonstrate the feasibility and effectiveness of the proposed model and control law.

Findings

The numerical simulation results affirm the accuracy and efficiency of the proposed control law for the TORA based OFWT system. The results demonstrate that the proposed control law is robust against unwanted disturbances and uncertainties. The unknown states are accurately estimated by EHGO which enables the controller to exhibit improved stabilization performance.

Originality/value

A new mathematical model of the 5-DOF barge-type OFWT system based on TORA is the major contribution of this research paper. Furthermore, it provides a new adaptive anti-vibration control scheme by incorporating the EHGO for the proposed model.

Article
Publication date: 1 May 1975

APPLIED Technology, Middle East and European marketing and technical support representative of PF Industries Inc, will exhibit ground support equipment supplied to airlines…

Abstract

APPLIED Technology, Middle East and European marketing and technical support representative of PF Industries Inc, will exhibit ground support equipment supplied to airlines worldwide.

Details

Aircraft Engineering and Aerospace Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 30 August 2013

Michael Felux, Thomas Dautermann and Hayung Becker

The purpose of this paper is to show the performance during flight tests of the proposed GBAS Approach Service Type D navigation – intended to support autoland operations – in…

Abstract

Purpose

The purpose of this paper is to show the performance during flight tests of the proposed GBAS Approach Service Type D navigation – intended to support autoland operations – in comparison to ILS.

Design/methodology/approach

An experimental GBAS station was installed at the research airport in Braunschweig. Data processing complied with the currently proposed requirements to support automatic landings. Corrections for GPS measurements and integrity parameters were sent to a research aircraft which was equipped with an experimental GPS receiver providing raw measurement data. The received data and measurements were then processed on board in real‐time and provide approach guidance information to the experimental pilot in form of a flight director indication. To evaluate system performance the authors create a truth reference track from a post processed carrier phase solution. Finally, the GBAS outputs and the received ILS signals are compared to the truth reference.

Findings

The system performed well within all specifications and showed full availability at all times during the flight. Compared to ILS, GBAS is significantly more precise and shows almost no noise.

Research limitations/implications

The navigation solution was flown manually according to flight director displays, therefore no automatic approaches and landings could be performed.

Practical implications

It has been demonstrated that GBAS can support the intended operations under nominal conditions.

Originality/value

This work is part of the ongoing validation of the proposed standards for a satellite based landing system. It compares GBAS and ILS data from flight tests carried out with a representative aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 December 1962

MORE than 200 delegates and observers from sixteen countries attended the International Federation of Airline Pilots' Associations (I.F.A.L.P.A.) Symposium on all weather landing

Abstract

MORE than 200 delegates and observers from sixteen countries attended the International Federation of Airline Pilots' Associations (I.F.A.L.P.A.) Symposium on all weather landing, at the Hilton Hotel in Amsterdam from October 17 to 19, 1962. The Symposium, which was opened by Prince Bernhardt of the Netherlands, heard presentations from a considerable proportion of the equipment manufacturers in the automatic landing field, covering the current state of their system development and testing. More than half of the symposium was allotted to discussion and many of the pilots present expressed their opinions. The dominant theme of the discussion, naturally enough, was the proper place of the pilot in the all weather landing operation. This aspect of the operation is probably now the most contentious in the whole field and views expressed at this meeting might have been expected to be of great value to equipment and aircraft manufacturers. In fact, although much of interest was said, it cannot be recorded that there was a large measure of agreement between the pilots present.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 12
Type: Research Article
ISSN: 0002-2667

1 – 10 of 956