Search results

1 – 10 of 16
Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2024

Mohd Hasfarisham Abd Halim, Nor Khairunnisa Talib, Shyeh Sahibul Karamah Masnan and Mokhtar Saidin

This study was conducted with the main purpose of recording primary data related to environmental factors, which has become the main criteria in the selection of the Sungai Batu…

Abstract

Purpose

This study was conducted with the main purpose of recording primary data related to environmental factors, which has become the main criteria in the selection of the Sungai Batu Archaeological Complex (SBAC) as the center of the iron smelting industry and trade in ancient Kedah.

Design/methodology/approach

To fulfill this purpose, field studies involving drone photogrammetry mapping, augering, core drilling and geophysical mapping methods were carried out.

Findings

The results obtained through the application of the method have shown that SBAC has a good environment, which has a wide and deep river flow, the existence of Mount Jerai and the abundance of iron ores, mangrove Merbok and clay.

Research limitations/implications

Resources did not allow for environment studies of the by-products tourism sites as part of the current study.

Practical implications

The study also included a survey and mapping to obtain potential primary data around SBAC in the process of developing it as the center of the world iron industry.

Social implications

One finding is that attention to heritage policy and protection must be ongoing at all levels of government and the local community to ensure that the survey and mapping data carried out can be developed as a sustainable heritage tourism product.

Originality/value

This study reveals primary data related to the suitability of paleoenvironment in the SBAC development process as a world iron smelting industry area.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 May 2024

Issah Ibrahim and David Lowther

Evaluating the multiphysics performance of an electric motor can be a computationally intensive process, especially where several complex subsystems of the motor are coupled…

Abstract

Purpose

Evaluating the multiphysics performance of an electric motor can be a computationally intensive process, especially where several complex subsystems of the motor are coupled together. For example, evaluating acoustic noise requires the coupling of the electromagnetic, structural and acoustic models of the electric motor. Where skewed poles are considered in the design, the problem becomes a purely three-dimensional (3D) multiphysics problem, which could increase the computational burden astronomically. This study, therefore, aims to introduce surrogate models in the design process to reduce the computational cost associated with solving such 3D-coupled multiphysics problems.

Design/methodology/approach

The procedure involves using the finite element (FE) method to generate a database of several skewed rotor pole surface-mounted permanent magnet synchronous motors and their corresponding electromagnetic, structural and acoustic performances. Then, a surrogate model is fitted to the data to generate mapping functions that could be used in place of the time-consuming FE simulations.

Findings

It was established that the surrogate models showed promising results in predicting the multiphysics performance of skewed pole surface-mounted permanent magnet motors. As such, such models could be used to handle the skewing aspects, which has always been a major design challenge due to the scarcity of simulation tools with stepwise skewing capability.

Originality/value

The main contribution involves the use of surrogate models to replace FE simulations during the design cycle of skewed pole surface-mounted permanent magnet motors without compromising the integrity of the electromagnetic, structural, and acoustic results of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2024

Alamgir Khan, Javed Iqbal and Rasool Shah

This study presents a two-step numerical iteration method specifically designed to solve absolute value equations. The proposed method is valuable and efficient for solving…

Abstract

Purpose

This study presents a two-step numerical iteration method specifically designed to solve absolute value equations. The proposed method is valuable and efficient for solving absolute value equations. Several numerical examples were taken to demonstrate the accuracy and efficiency of the proposed method.

Design/methodology/approach

We present a two-step numerical iteration method for solving absolute value equations. Our two-step method consists of a predictor-corrector technique. The new method uses the generalized Newton method as the predictor step. The four-point open Newton-Cotes formula is considered the corrector step. The convergence of the proposed method is discussed in detail. This new method is highly effective for solving large systems due to its simplicity and effectiveness. We consider the beam equation, using the finite difference method to transform it into a system of absolute value equations, and then solve it using the proposed method.

Findings

The paper provides empirical insights into how to solve a system of absolute value equations.

Originality/value

This paper fulfills an identified need to study absolute value equations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Fang Liu, Zilong Wang, JiaCheng Zhou, Yuqin Wu and Zhen Wang

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects…

Abstract

Purpose

The purpose of this study is to investigate the effects of Ce and Sb doping on the microstructure and thermal mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder. The effects of 0.5%Sb and 0.07%Ce doping on microstructure, thermal properties and mechanical properties of Sn-1.0Ag-0.5Cu lead-free solder were investigated.

Design/methodology/approach

According to the mass ratio, the solder alloys were prepared from tin ingot, antimony ingot, silver ingot and copper ingot with purity of 99.99% at 400°C. X-ray diffractometer was adopted for phase analysis of the alloys. Optical microscopy, scanning electron microscopy and energy dispersive spectrometer were used to study the effect of the Sb and Ce doping on the microstructure of the solder. Then, the thermal characteristics of alloys were characterized by a differential scanning calorimeter (DSC). Finally, the ultimate tensile strength (UTS), elongation (EL.%) and yield strength (YS) of solder alloys were measured by tensile testing machine.

Findings

With the addition of Sb and Ce, the ß-Sn and intermetallic compounds of solders were refined and distributed more evenly. With the addition of Sb, the UTS, EL.% and YS of Sn-1.0Ag-0.5Cu increased by 15.3%, 46.8% and 16.5%, respectively. The EL.% of Sn-1.0Ag-0.5Cu increased by 56.5% due to Ce doping. When both Sb and Ce elements are added, the EL.% of Sn-1.0Ag-0.5Cu increased by 93.3%.

Originality/value

The addition of 0.5% Sb and 0.07% Ce can obtain better comprehensive performance, which provides a helpful reference for the development of Sn-Ag-Cu lead-free solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Last week (16)

Content type

Earlycite article (16)
1 – 10 of 16