Search results

1 – 4 of 4
Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1131

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 14 December 2023

Fouad Al Bayaty, Mazen M. Jamil Al-Obaidi, Anissa Lokman, Suhaila Yazid and Omar Emad Ibrahim

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

Abstract

Purpose

This study examines the osteoconductive and healing capabilities of locally implanted synthetic hydroxyapatite (sHAp) derived from eggshells in the central incisor sockets of rats.

Design/methodology/approach

Toxicity experiments were conducted in vitro and in vivo, to testify the safety dosage of sHAp. Around 24 mature male Sprague–Dawley (SD) rats had their upper central incisors extracted. The rats were placed into three groups of eight rats each: Group 1: the sockets of extracted central incisors were left unfilled (control), Group 2: filled up with commercially available hydroxyapatite (HAp) and Group 3: implanted with sHAp locally retrieved from eggshells. After extraction, four rats from each group were sacrificed at 2nd and 4th weeks. Maxillary tissue sections were obtained and stained with hematoxylin and eosin (H&E) and Masson’s trichome (MT) staining. Anti-osteocalcin (OCN) and proliferating cell nuclear antigen (PCNA) were used primary antibodies for immunohistochemistry (IHC) special labeling.

Findings

The results showed that the locally implanted sHAp was non-toxic and safe in cell lines (human osteoblast and fibroblast) and animals. Histological analysis of H&E, MT and IHC showed that the sockets treated with locally implanted sHAp from eggshells were filled with new bone tissue of comparable thickness to other groups.

Originality/value

This unique technique uses locally implanted eggshell-derived sHAp with osteoconductive characteristics. In an in vivo model, sHAps increased OCN and PCNA expression to improve bone repair.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 3 June 2019

Lutendo Patricia Mathivha, Vuyisile Samuel Thibane and Fhatuwani Nixwell Mudau

The purpose of this paper is to investigate the health and medicinal importance of bush tea (Athrixia phylicoides DC) and special tea (Monsonia burkeana Planch. ex Harv), two of…

2036

Abstract

Purpose

The purpose of this paper is to investigate the health and medicinal importance of bush tea (Athrixia phylicoides DC) and special tea (Monsonia burkeana Planch. ex Harv), two of Southern African indigenous herbal teas.

Design/methodology/approach

The two herbal teas, A. phylicoides and M. burkeana were extracted individually and in combined ratios for analysis. The phenolic content was determined and the different phenolic compounds were identified using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The anti-diabetic activity of the teas was determined by evaluating the inhibition of both α-amylase and α-glucosidase in vitro. The anti-proliferative activity was measured on human cervical cancer (HeLa) cell line using the MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium) assay.

Findings

Gallic acid, chlorogenic acid and quercetin were identified to be present in significant quantities by TLC. The HPLC quantified the presence of catechin (1.567 mg/g) and chlorogenic acid (1.862 mg/g) in special tea while chlorogenic acid (1.288 mg/g) was present in bush tea. Bush tea and special tea expressed significant levels of phenolic content and high antioxidant activities. Special tea (S100) expressed high inhibition of α-amylase, α-glucosidase and HeLa cell line proliferation when compared to bush tea (B100).

Originality/value

Both bush tea and special tea could provide an alternative for treatment and management of both diabetes and cervical cancer. However, future studies are needed to investigate their synergistic effect with a wide range of other commercial herbal teas.

Details

British Food Journal, vol. 121 no. 4
Type: Research Article
ISSN: 0007-070X

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 4 of 4