Search results

1 – 10 of 41
Article
Publication date: 21 December 2017

Bing Bing Tu and Dong Zhao

The study of the character of structural hysteretic energy under earthquake is an essential foundation for energy-based seismic design and evaluation method. The purpose of this…

Abstract

Purpose

The study of the character of structural hysteretic energy under earthquake is an essential foundation for energy-based seismic design and evaluation method. The purpose of this paper is to explore the distribution law of the accumulative irrecoverable hysteretic energy for MDOF structures, a formula of the accumulated irrecoverable hysteretic energy ratio along the layers is derived.

Design/methodology/approach

The procedure is based on the energy balance principle and the concept of the equivalent single-degree-of-freedom system. Furthermore, sensitivity analysis is carried out for 16 working conditions, considering all these possibilities of local failure or damage. And then the sensitivity influencing rule is obtained and the proposed formula is simplified.

Findings

Finally, the validation of the proposed formula is investigated through comparisons with the nonlinear time-history analysis results.

Originality/value

The proposed formula can be effectively to estimate the distribution of the hysteretic energy under a given ground motion.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 October 2010

Wei‐Ling Chiang, Dung‐Jiang Chiou, Cheng‐Wu Chen, Jhy‐Pyng Tang, Wen‐Ko Hsu and Te‐Yu Liu

This study aims to investigate the relationship between structural damage and sensitivity indices using the Hilbert‐Huang transform (HHT) method.

Abstract

Purpose

This study aims to investigate the relationship between structural damage and sensitivity indices using the Hilbert‐Huang transform (HHT) method.

Design/methodology/approach

The relationship between structural damage and the sensitivity indices is obtained by using the HHT method. Three sensitivity indices are proposed: the ratio of rotation (RR), the ratio of shifting value (SV) and the ratio of bandwidth (RB). The nonlinear single degree of freedom and multiple degree of freedom models with various predominant frequencies are constructed using the SAP2000 program. Adjusted PGA El Centro and Chi‐Chi (TCU068) earthquake data are used as the excitations. Next, the sensitivity indices obtained using the HHT and the fast Fourier transform (FFT) methods are evaluated separately based on the acceleration responses of the roof structures to earthquakes.

Findings

Simulation results indicate that, when RR < 1, the structural response is in the elastic region, and neither the RB nor SV in the HHT and FFT spectra change. When the structural response is nonlinear, i.e. RR1, a positive trend of change occurs in RB and RR, while in the HHT spectra, SV increases with an increasing RR. Moreover, the FFT spectra reveal that SV changes only when the RR is sufficiently large. No steady relationship between the RB and the RR can be found.

Originality/value

The paper demonstrates the effectiveness of the HHT method.

Details

Engineering Computations, vol. 27 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2018

Xuanhua Fan, Keying Wang and Shifu Xiao

As a practical engineering method, earthquake response spectra play an important role in seismic hazard assessment and in seismic design of structures. However, the computing…

Abstract

Purpose

As a practical engineering method, earthquake response spectra play an important role in seismic hazard assessment and in seismic design of structures. However, the computing scale and the efficiency of commercial software restricted the solution of complex structures. There is a clear need of developing large-scale and highly efficient finite element procedures for response spectrum analysis.

Design/methodology/approach

In this paper, the kernel theories for earthquake response spectra are deduced and the corresponding parallel solution flow via the modal superposition method is presented. Based on the algorithm and the parallel data structure of JAUMIN framework, a parallel finite element (FE) solution module is established. Using the solution procedure on a supercomputer equipped with up to thousands of processors, the correctness and parallel scalability of the algorithm are evaluated via numerical experiments of typical engineering examples.

Findings

The results show that the solution module has the same precision as the commercial FE software ANSYS; the maximum solution scale achieves 154 million degrees of freedom (DOFs) with a favorable parallel computing efficiency, going far beyond the computing ability of the commercial FE software.

Originality/value

The solution scale in this paper is very challenging for the large-scale parallel computing of structural dynamics and will promote the dynamic analysis ability of complex facilities greatly.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 June 2023

Haylim Chha and Yongbo Peng

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in…

3320

Abstract

Purpose

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in this case cannot guarantee cost-effective control effort and efficient structural response alleviation. To this end, this paper proposes a novel adaptive linear quadratic regulator (LQR) by integrating wavelet transform and genetic algorithm (GA).

Design/methodology/approach

In each time interval, multiresolution analysis of real-time structural responses returns filtered time signals dominated by different frequency bands. Minimization of cost function in each frequency band obtains control law and gain matrix that depend on temporal-frequency band, so suppressing resonance-induced filtered response signal can be directly achieved by regulating gain matrix in the temporal-frequency band, leading to emphasizing cost-function weights on control and state. To efficiently subdivide gain matrices in resonant and normal frequency bands, the cost-function weights are optimized by a developed procedure associated to genetic algorithm. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structures subjected to near- and far-fault ground motions are studied.

Findings

Resonant band requires a larger control force than non-resonant band to decay resonance-induced peak responses. The time-varying cost-function weights generate control force more cost-effective than time-invariant ones. The scheme outperforms existing control algorithms and attains the trade-off between response suppression and control force under non-stationary excitations.

Originality/value

Proposed control law allocates control force amounts depending upon resonant or non-resonant band in each time interval. Cost-function weights and wavelet decomposition level are formulated in an elegant manner. Genetic algorithm-based optimization cost-efficiently results in minimizing structural responses.

Article
Publication date: 7 October 2013

Parviz Moradipour, Jamaloddin Noorzaei, Mohd Saleh Jaafar and Farah Nora Aznieta Abdul Aziz

In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high…

Abstract

Purpose

In structural, earthquake and aeronautical engineering and mechanical vibration, the solution of dynamic equations for a structure subjected to dynamic loading leads to a high order system of differential equations. The numerical methods are usually used for integration when either there is dealing with discrete data or there is no analytical solution for the equations. Since the numerical methods with more accuracy and stability give more accurate results in structural responses, there is a need to improve the existing methods or develop new ones. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a new time integration method is proposed mathematically and numerically, which is accordingly applied to single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. Finally, the results are compared to the existing methods such as Newmark's method and closed form solution.

Findings

It is concluded that, in the proposed method, the data variance of each set of structural responses such as displacement, velocity, or acceleration in different time steps is less than those in Newmark's method, and the proposed method is more accurate and stable than Newmark's method and is capable of analyzing the structure at fewer numbers of iteration or computation cycles, hence less time-consuming.

Originality/value

A new mathematical and numerical time integration method is proposed for the computation of structural responses with higher accuracy and stability, lower data variance, and fewer numbers of iterations for computational cycles.

Details

Journal of Engineering, Design and Technology, vol. 11 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 March 2012

Min‐You Chen, Jin‐qian Zhai, Z.Q. Lang, Feng Sun and Gang Hu

The present study is concerned with the application of a nonlinear frequency analysis approach to the detection and location of water tree degradation of power cable XLPE…

Abstract

Purpose

The present study is concerned with the application of a nonlinear frequency analysis approach to the detection and location of water tree degradation of power cable XLPE insulation without turning off electric power.

Design/methodology/approach

The use of power cable system responses to power line carrier signals are proposed to conduct the required signal analysis for damage location purpose. This technique is based on the fact that the water tree degradation in power cables can make the system behave nonlinearly. Consequently, the location of water tree degradation can be determined by detecting the position of nonlinear components in power cable systems.

Findings

A novel method has been proposed for locating water tree degradation in power cable systems; numerical simulation studies have demonstrated the effectiveness of the new technique.

Originality/value

The proposed technique has the potential to be applied in practice to more effectively resolve the power cable damage location problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 August 2019

Jafar Ali and Debasish Bandyopadhyay

Condition monitoring (CM) has become significantly important, particularly in the context of ensuring safety, reliability and future usefulness of civil infrastructural systems…

Abstract

Purpose

Condition monitoring (CM) has become significantly important, particularly in the context of ensuring safety, reliability and future usefulness of civil infrastructural systems. Most of the age old structures require immediate attention. Nondestructive tests and/or load tests along with routine maintenance inspections are common practice. However, most of the NDT techniques are location-dependent and are conducted in a piecewise manner. The paper aims to discuss these issues.

Design/methodology/approach

Numerical methods incorporating inverse techniques are a global approach to identify structural parameters using dynamic responses. However, measurement at all degrees of freedom does not seem to be feasible, due to practical constraints. Parameter identification of structures based on limited dynamic responses like modal slope and curvature mode shapes at the element level in a finite element platform is proposed in the present paper. The structural property for each element is derived adopting a two-phase analysis process, consisting modal extraction and structural parameter identification. It is important to study the accuracy of the predicted parameters with the number of measured modes. The structural property is identified using measured responses at those selected MDOF.

Findings

The proposed method is demonstrated in detail with a numerical example. The method seems to be an attractive proposition as the results obtained are very accurate even with noise-contaminated data.

Research limitations/implications

However, for practical problems, the experimental validation is significantly important prior to its application in real-life problems.

Practical implications

The developed model seems to be feasible for practical applications after experimental validation, as it is able to identify the structural parameters from limited noisy dynamic responses in frequency domains measured for few modes.

Social implications

Structural CM is the need of the hour, particularly for infrastructural systems including buildings and bridges, etc. System identification with a global dynamic response at few measurement locations may address the issue of health assessment of structures, which will have great social implications with respect to safety.

Originality/value

The proposed numerical model is originally developed by the authors with judicial modifications and combination of earlier research contributions to achieve greater accuracy. Limited measurement and the effect of random noise with numerical example are considered for the successful validation.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 May 2014

Zheng Lu, Xilin Lu, Huanjun Jiang and Sami F. Masri

The particle damper is an efficient vibration control device and is widely used in engineering projects; however, the performance of such a system is very complicated and highly…

Abstract

Purpose

The particle damper is an efficient vibration control device and is widely used in engineering projects; however, the performance of such a system is very complicated and highly nonlinear. The purpose of this paper is to accurately simulate the particle damper system properly, and help to understand the underlying physical mechanics.

Design/methodology/approach

A high-fidelity simulation process is well established to account for all significant interactions among the particles and with the host structure system, including sliding friction, gravitational forces, and oblique impacts, based on the modified discrete element method. In this process, a suitable particle damper system is modeled, reaction forces between particle aggregates and the primary structure are incorporated, a reasonable contact force model and time step are determined, and an efficient contact detection algorithm is adopted.

Findings

The numerical results are further validated by both special computational tests and shaking table tests, with good agreements to the experimental results. The method is shown to be effective and accurate to simulate the particle damper system.

Originality/value

The approaches described in this paper provide an efficient numerical way to investigate complex particle damper systems.

Details

Engineering Computations, vol. 31 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2011

K. Gopikrishna and Manish Shrikhande

The purpose of this paper is to present a new hierarchical finite element formulation for approximation in time.

Abstract

Purpose

The purpose of this paper is to present a new hierarchical finite element formulation for approximation in time.

Design/methodology/approach

The present approach using wavelets as basis functions provides a global control over the solution error as the equation of motion is satisfied for the entire duration in the weighted integral sense. This approach reduces the semi‐discrete system of equations in time to be solved to a single algebraic problem, in contrast to step‐by‐step time integration methods, where a sequence of algebraic problems are to be solved to compute the solution.

Findings

The proposed formulation has been validated for both inertial and wave propagation types of problems. The stability and accuracy characteristics of the proposed formulation has been examined and is found to be energy conserving.

Originality/value

The paper presents a new hierarchical finite element formulation for the solution of structural dynamics problems. This formulation uses wavelets as the analyzing basis for the desired transient solution. It is found to be very well behaved in solution of wave‐propagation problems.

Details

Engineering Computations, vol. 28 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Mário Rui Tiago Arruda and Dragos Ionut Moldovan

– The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Abstract

Purpose

The purpose of this paper is to report the implementation of an alternative time integration procedure for the dynamic non-linear analysis of structures.

Design/methodology/approach

The time integration algorithm discussed in this work corresponds to a spectral decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion. This is achieved by solving an eigenvalue problem in the time domain that only depends on the approximation basis being implemented. Complete sets of orthogonal Legendre polynomials are used to define the time approximation basis required by the model.

Findings

A classical example with known analytical solution is presented to validate the model, in linear and non-linear analysis. The efficiency of the numerical technique is assessed. Comparisons are made with the classical Newmark method applied to the solution of both linear and non-linear dynamics. The mixed time integration technique presents some interesting features making very attractive its application to the analysis of non-linear dynamic systems. It corresponds in essence to a modal decomposition technique implemented in the time domain. As in the case of the modal decomposition in space, the numerical efficiency of the resulting integration scheme depends on the possibility of uncoupling the equations of motion.

Originality/value

One of the main advantages of this technique is the possibility of considering relatively large time step increments which enhances the computational efficiency of the numerical procedure. Due to its characteristics, this method is well suited to parallel processing, one of the features that have to be conveniently explored in the near future.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 41