Search results

1 – 10 of 176
Article
Publication date: 4 September 2019

Leticia Col Debella, Carolina Castro Cittadin, Marcos Arndt and Roberto Dalledone Machado

This paper aims to present an adaptive approach of the generalized finite element method (GFEM) for transient dynamic analysis of bars and trusses. The adaptive GFEM, previously…

Abstract

Purpose

This paper aims to present an adaptive approach of the generalized finite element method (GFEM) for transient dynamic analysis of bars and trusses. The adaptive GFEM, previously proposed for free vibration analysis, is used with the modal superposition method to obtain precise time-history responses.

Design/methodology/approach

The adaptive GFEM is applied to the transient analysis of bars and trusses. To increase the precision of the results and computational efficiency, the modal matrix is responsible for the decoupling of the dynamic equilibrium equations in the modal superposition method, which is used with only the presence of the problem’s most preponderant modes of vibration. These modes of vibration are identified by a proposed coefficient capable of indicating the influence of each mode on the transient response.

Findings

The proposed approach leads to more accurate results of displacement, velocity and acceleration when compared to the traditional finite element method.

Originality/value

In this paper, the application of the adaptive GFEM to the transient analysis of bars and trusses is presented for the first time. A methodology of identification of the preponderant modes to be retained in the modal matrix is proposed to improve the quality of the solution. The examples showed that the method has a strong potential to solve dynamic analysis problems, as the approach had already proved to be efficient in the modal analysis of different framed structures. A simple way to perform h-refinement of truss elements to obtain reference solutions for dynamic problems is also proposed.

Details

Engineering Computations, vol. 37 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2019

Corrado Groth, Ubaldo Cella, Emiliano Costa and Marco Evangelos Biancolini

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Abstract

Purpose

This paper aims to present a fast and effective approach to tackle complex fluid structure interaction problems that are relevant for the aeronautical design.

Design/methodology/approach

High fidelity computer-aided engineering models (computational fluid dynamics [CFD] and computational structural mechanics) are coupled by embedding modal shapes into the CFD solver using RBF mesh morphing.

Findings

The theoretical framework is first explained and its use is then demonstrated with a review of applications including both steady and unsteady cases. Different flow and structural solvers are considered to showcase the portability of the concept.

Practical implications

The method is flexible and can be used for the simulation of complex scenarios, including components vibrations induced by external devices, as in the case of flapping wings.

Originality/value

The computation mesh of the CFD model becomes parametric with respect to the modal shape and, so, capable to self-adapt to the loads exerted by the surrounding fluid both for steady and transient numerical studies.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 21 September 2022

Yujie Zhang, Wenchao Niu and Bin Li

Structural stress and strain in the key components of aircraft structure is important for structural health monitoring and strength assessment. However, the measure of dynamic…

Abstract

Purpose

Structural stress and strain in the key components of aircraft structure is important for structural health monitoring and strength assessment. However, the measure of dynamic strain is often difficult to implement because of the complex test equipment and inconvenient measure points, especially in flight test. This study aims to propose an algorithm of dynamic strain estimation using the acceleration response in time domain to simplify the measure of dynamic strain.

Design/methodology/approach

The relationship between the strain and acceleration response is established through the sinusoidal response or modal analysis, which is insensitive to the excitation position and form. A band-pass filter is used to obtain the modal acceleration response, and a filter frequency band selection method is proposed. Then, the dynamic strain at the concerned points can be estimated based on the modal superposition principle.

Findings

Simulation and experiment are implemented to validate the applicability and effectiveness of the strain estimation method. The estimated strain results agree well with numerical simulation as well as the experimental results. The simplicity and accuracy of the strain estimation method show practicability for dynamic strength and fatigue analysis in engineering applications.

Originality/value

An algorithm of dynamic strain estimation using the acceleration response in time domain is developed. A band-pass filter is used to obtain the modal acceleration response, and a filter frequency band selection method is proposed. The dynamic strain at the concerned points can be estimated based on the modal superposition principle.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2018

Xuanhua Fan, Keying Wang and Shifu Xiao

As a practical engineering method, earthquake response spectra play an important role in seismic hazard assessment and in seismic design of structures. However, the computing…

Abstract

Purpose

As a practical engineering method, earthquake response spectra play an important role in seismic hazard assessment and in seismic design of structures. However, the computing scale and the efficiency of commercial software restricted the solution of complex structures. There is a clear need of developing large-scale and highly efficient finite element procedures for response spectrum analysis.

Design/methodology/approach

In this paper, the kernel theories for earthquake response spectra are deduced and the corresponding parallel solution flow via the modal superposition method is presented. Based on the algorithm and the parallel data structure of JAUMIN framework, a parallel finite element (FE) solution module is established. Using the solution procedure on a supercomputer equipped with up to thousands of processors, the correctness and parallel scalability of the algorithm are evaluated via numerical experiments of typical engineering examples.

Findings

The results show that the solution module has the same precision as the commercial FE software ANSYS; the maximum solution scale achieves 154 million degrees of freedom (DOFs) with a favorable parallel computing efficiency, going far beyond the computing ability of the commercial FE software.

Originality/value

The solution scale in this paper is very challenging for the large-scale parallel computing of structural dynamics and will promote the dynamic analysis ability of complex facilities greatly.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1997

A. Dutta and C.V. Ramakrishnan

Presents a method of obtaining an optimal mesh in the finite element analysis of two‐dimensional linear elastodynamic problems under transient dynamic loading, which is based on a…

Abstract

Presents a method of obtaining an optimal mesh in the finite element analysis of two‐dimensional linear elastodynamic problems under transient dynamic loading, which is based on a generalization of the Z‐Z criterion for discretization error estimation for time‐dependent problems. The optimal mesh limits the error due to discretization within a prescribed value, and studies of all other possible errors involved in finite element transient dynamic analysis are carried out systematically. Also proposes methods to study and limit the modal truncation error. Numerous examples show the capabilities of the proposed methods and the importance of the optimal mesh and modal truncation error in finite element transient dynamic analysis.

Details

Engineering Computations, vol. 14 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2019

Cristiane Oliveira Viana, Hermes Carvalho, José Correia, Pedro Aires Montenegro, Raphael Pedrosa Heleno, Guilherme Santana Alencar, Abilio M.P. de Jesus and Rui Calçada

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using…

Abstract

Purpose

The purpose of this paper is to evaluate the fatigue process through the dynamic analysis of the global structural model and local static sub-modelling in a critical detail using the hot-spot stress approach. The detail was studied in three different positions at the “Alcácer do Sal” access viaduct, and the methodologies from the IIW and Eurocode EN 1993-1-9 were compared.

Design/methodology/approach

In this study, the fatigue life process based on the hot-spot stress approach was evaluated using a global dynamic analysis and a local sub-modelling based on a static analysis of welded connections in the “Alcácer do Sal” railway structure, Portugal, taking into consideration the recommendations from IIW and Eurocode EN 1993-1-9. The hot-spot stresses were calculated through the static analysis of the sub-model of the welded connection for each vibration mode with the aim to obtain the temporal stresses using the modal coordinates and modal stresses of the extrapolation points. The Ansys® and Matlab® softwares were used for the numerical analysis and the hot-spot stress calculations, respectively.

Findings

The proposed methodology/approach to obtain fatigue assessment is based on the modal analysis of the global structural model and local static sub-modelling. The modal analysis was used to extract the boundary conditions to be used in the local model to determine the temporal stresses of the extrapolation points. Based on the modal superposition method, the stresses as function of time were obtained for fatigue life evaluation of a critical detail by the hot-spot stress approach. The detail was studied in three different positions.

Originality/value

In the present study, a global-local fatigue methodology based on dynamic analysis of the global structural model and local static sub-modelling of the critical detail using the hot-spot stress approach is proposed. Herein, the modal analysis of the global structural model supported by the modal superposition method was used to obtain the matrix of modal coordinates. The static analysis of the local sub-model for each mode from the modal analysis of global structural model was done to estimate the hot-spot stresses. The fatigue damage calculation was based on S-N curve of the critical detail and rainflow method. The IIW recommendation proved to be more conservative compared to the proposed rules in the Eurocode EN 1993-1-9. The global-local modelling based on dynamic analysis is an important and effective tool for fatigue evaluation in welded joints.

Details

International Journal of Structural Integrity, vol. 12 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 February 2023

Natalia García-Fernández, Manuel Aenlle, Adrián Álvarez-Vázquez, Miguel Muniz-Calvente and Pelayo Fernández

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Abstract

Purpose

The purpose of this study is to review the existing fatigue and vibration-based structural health monitoring techniques and highlight the advantages of combining both approaches.

Design/methodology/approach

Fatigue monitoring requires a fatigue model of the material, the stresses at specific points of the structure, a cycle counting technique and a fatigue damage criterion. Firstly, this paper reviews existing structural health monitoring (SHM) techniques, addresses their principal classifications and presents the main characteristics of each technique, with a particular emphasis on modal-based methodologies. Automated modal analysis, damage detection and localisation techniques are also reviewed. Fatigue monitoring is an SHM technique which evaluate the structural fatigue damage in real time. Stress estimation techniques and damage accumulation models based on the S-N field and the Miner rule are also reviewed in this paper.

Findings

A vast amount of research has been carried out in the field of SHM. The literature about fatigue calculation, fatigue testing, fatigue modelling and remaining fatigue life is also extensive. However, the number of publications related to monitor the fatigue process is scarce. A methodology to perform real-time structural fatigue monitoring, in both time and frequency domains, is presented.

Originality/value

Fatigue monitoring can be combined (applied simultaneously) with other vibration-based SHM techniques, which might significantly increase the reliability of the monitoring techniques.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 11 June 2018

Guilherme Alencar, Gonçalo Ferreira, Abílio M.P. de Jesus and Rui Calçada

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train…

Abstract

Purpose

The purpose of this paper is to investigate the fatigue performance of a welded detail from a composite steel-concrete railway twin girder bridge caused by a passenger train circulating at varying speeds, by identifying the dynamic amplification scenarios induced by resonance. For this purpose, the hotspot stress method is used, instead of the traditional nominal stress methods.

Design/methodology/approach

This paper assesses the fatigue behavior of a welded connection considering critical stress concentration locations (hotspot). Finite element analysis (FEA) is applied, utilizing both a global and a local submodel, made compatible by displacements field interpolation. The dynamic response is obtained through the modal superposition method. Stress cycles are extracted with the rainflow counting method and the fatigue damage is calculated with Palmgren-Miner’s rule. The feasibility of five submodels with different mesh densities, i.e. 1, 2, 4, 8 and 20 mm is verified.

Findings

An increase in the fatigue damage due to the resonance effect was found for the train traveling at a speed of 225 km/h. A good agreement between the computed fatigue damage for the submodels is achieved. However, a non-monotonic hotspot stress/fatigue damage vs mesh density convergence was observed with a peak observed for the 4 mm model, which endorses the mesh sensitivity that could occur when using the surface stress extrapolation detailed rules specified in the standards for the hotspot stress method.

Originality/value

Advanced dynamic analyses are proposed to obtain local stresses in order to apply a local method for the fatigue assessment of a bridge’s structure subjected to high-speed railway traffic on the basis of the mode superposition technique resulting in much less computing times.

Details

International Journal of Structural Integrity, vol. 9 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 November 2020

Y.S. Wang, H. Guo, Tao Yuan, L.F. Ma and Changcheng Wang

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive…

Abstract

Purpose

Electromagnetic noise of permanent magnet synchronous motor (PMSM) seriously affects the sound quality of electric vehicles (EVs). This paper aims to present a comprehensive process for the electromagnetic noise analysis and optimization of a water-cooled PMSM.

Design/methodology/approach

First, the noises of an eight-pole 48-slot PMSM in at speeds up to 10,000 rpm are measured. Furthermore, an electromagnetic-structural-acoustic model of the PMSM is established for multi-field coupling simulations of electromagnetic noises. Finally, the electromagnetic noise of the PMSM is optimized by using the multi-objective genetic algorithm, where a multi-objective function related to the slot width of PMSM stator is defined for radial electromagnetic force (REF) optimization.

Findings

The experimental results show that main electromagnetic noises are the 8n-order (n = 1, 2, 3, …) and 12-order noises. The simulated results show that the REFs are mainly generated by the 8n-order (n = 1, 2, 3, 4, 5, 6) vibrations, especially those of the 8th, 16th, 24th and 32th orders. The 12-order noise is a mechanical noise, which might be caused by the bearings and other structures of the PMSM. Comparing the simulated results before and after optimization, both the REFs and electromagnetic noises are effectively reduced, which suggests that an appropriate design of stator slot is important for reducing electromagnetic noise of the PMSM.

Originality/value

In view of applications, the methods proposed in this paper can be applied to other types of PMSM for generation mechanism analysis of electromagnetic noise, optimal design of PMSM and thereby noise improvement of EVs.

Article
Publication date: 3 October 2016

Zhen Sun and Zilong Zou

The purpose of this paper is to present a practical and efficient iterative method for predicting vehicle-induced response of bridge.

Abstract

Purpose

The purpose of this paper is to present a practical and efficient iterative method for predicting vehicle-induced response of bridge.

Design/methodology/approach

The vehicle-bridge interaction (VBI) problem is generalized mathematically and a computational algorithm for VBI is proposed. This method rests on an iterative procedure, which utilizes the whole interaction process for iteration. By this means, vehicle and bridge become totally uncoupled and are only linked by the contact force history. This method provides flexibility to choose simplified or refined vehicle and bridge models for the VBI problem, as well as open options for different commercial FEM software without specialized codes.

Findings

The method is verified through two numerical examples. The first example uses a simple 1D beam bridge model, which illustrates the procedure of this method and demonstrates its fast convergence in several iterations. The second example employs a realistic full 3D finite element bridge model, which shows that the method easily connects complex FEM bridge models in ABAQUS with a calibrated vehicle model in Matlab. The dynamic response of the bridge is reliably calculated within only a few iterations.

Originality/value

The proposed iterative method separates vehicle and bridge into independent subsystems in the computational process, thus providing more flexibility to utilize commercial FEM softwares. Its efficiency is realized through choosing the whole interaction force process for iteration, which considerably reduces the iteration steps.

Details

Engineering Computations, vol. 33 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 176