Search results

1 – 10 of 14
Article
Publication date: 1 March 2022

Kriparaj K.G., Roy V. Paul, Tide P.S. and Biju N.

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging…

Abstract

Purpose

The purpose of this paper is to conduct an experimental investigation on the shock cell structure of jets emanating from a four-lobed corrugated nozzle using Schlieren imaging technique.

Design/methodology/approach

The Schlieren images were captured for seven different nozzle pressure ratios (NPR = 2, 3, 4, 5, 6, 7 and 8) and compared with the shock cell structure of a round nozzle with an identical exit area. The variation in the length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first shock cell, Mach disk position and diameter for different NPR was measured from the Schlieren images and analysed.

Findings

A three-layer shock net observed in the jet emanating from the four-lobed corrugated nozzle is a novel concept in the field of under-expanded jet flows. A shock net represents interconnected layers of shock cells developed because of the interaction between the core and peripheral shock waves in a jet emanating from a corrugated lobed nozzle. Also, the pattern of shock net is different while taking Schlieren images across the groove and lobe sections. Thus, the shock net emerging from a corrugated lobed nozzle varies azimuthally and primarily depends on the nozzle exit cross section. The length of the shock cell, width of boundary interaction between adjacent shock cells, maximum width of first cell, Mach disk position and diameter were found to exhibit increasing trend with NPR.

Originality/value

A novel concept of interconnected layers of shock waves defined as “shock net” developed from a single jet emanating from a four-lobed corrugated nozzle was observed.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 May 2020

Roy V. Paul, Kriparaj K.G. and Tide P.S.

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

161

Abstract

Purpose

The purpose of this study is to investigate the aerodynamic characteristics of subsonic jet emanating from corrugated lobed nozzle.

Design/methodology/approach

Numerical simulations of subsonic turbulent jets from corrugated lobed nozzles using shear stress transport k-ω turbulence model have been carried out. The analysis was carried out by varying parameters such as lobe length, lobe penetration and lobe count at a Mach number of 0.75. The numerical predictions of axial and radial variation of the mean axial velocity, uu′ ¯ and vv′ ¯ have been compared with experimental results of conventional round and chevron nozzles reported in the literature.

Findings

The centreline velocity at the exit of the corrugated lobed nozzle was found to be lower than the velocity at the outer edges of the nozzle. The predicted potential core length is lesser than the experimental results of the conventional round nozzle and hence the decay in centreline velocity is faster. The centreline velocity increases with the increase in lobe length and becomes more uniform at the exit. The potential core length increases with the increase in lobe count and decreases with the increase in lobe penetration. The turbulent kinetic energy region is narrower with early appearance of a stronger peak for higher lobe penetration. The centreline velocity degrades much faster in the corrugated nozzle than the chevron nozzle and the peak value of Reynolds stress appears in the vicinity of the nozzle exit.

Practical implications

The corrugated lobed nozzles are used for enhancing mixing without the thrust penalty inducing better acoustic benefits.

Originality/value

The prominent features of the corrugated lobed nozzle were obtained from the extensive study of variation of flow characteristics for different lobe parameters after making comparison with round and chevron nozzle, which paved the way to the utilization of these nozzles for various applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 2021

Sathish Kumar K., Senthilkumar Chidambaram and Naren Shankar Radha Krishnan

This paper aims to present the jet mixing effectiveness of triangular tabs with semi-circular corrugations to control the subsonic and sonic correctly expanded jets.

Abstract

Purpose

This paper aims to present the jet mixing effectiveness of triangular tabs with semi-circular corrugations to control the subsonic and sonic correctly expanded jets.

Design/methodology/approach

Three semi-circular corrugated triangular tabs (Tab A, Tab B and Tab C) of equal blockage 5.11% are used, in which the corrugation locations on the tabs are varied. The offset distance between the semi-circular corrugations at the leaned edges of the triangular tabs are 0.0, 0.75 and 1.5 mm for the Tabs A, B and C, respectively. Two identical semi-circular corrugated tabs has been placed exactly 180° apart at the exit of the convergent nozzle. The pitot pressure measurements were taken to study the jet mixing characteristics of the tabs for the jet exit Mach numbers of 0.6, 0.8 and 1.0, and it is compared with the free jet.

Findings

The jet centerline pitot pressure decay reveals that, Tab A is very effective than Tab B and Tab C. For the jet exit Mach numbers of 0.6, 0.8 and 1.0, the potential core reduction for the Tab A is found to be 69.1%, 69.7% and 70.8%, respectively, when compared with the free jet.

Practical implications

The semi-circular corrugated triangular tabs were found to be more effective than the plain triangular tabs of equal blockage ratio for reducing the core length with minimum thrust loss.

Originality/value

The offset distance of the semi-circular corrugations are varied along the leaned sides of the triangular tabs, which is the novelty of this study.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 June 1995

An innovative hush kit for noisy jet aircraft with “old technology” low bypass engines (50 per cent of operating jets) is now being marketed within the aircraft industry. The…

Abstract

An innovative hush kit for noisy jet aircraft with “old technology” low bypass engines (50 per cent of operating jets) is now being marketed within the aircraft industry. The objective of the marketing campaign is to entice the most appropriate sponsor or partner to team up with the hush kit's inventor Captain Thomas Friedrich.

Details

Aircraft Engineering and Aerospace Technology, vol. 67 no. 6
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 July 1975

J.B. Large

1. Aircraft Noise—Its effect on people OF all the environmental noise sources, aircraft noise has received the most notoriety over the longest period of time. Aircraft noise is…

Abstract

1. Aircraft Noise—Its effect on people OF all the environmental noise sources, aircraft noise has received the most notoriety over the longest period of time. Aircraft noise is generally assumed to be a product of the jet age, but in 1939 in the United Kingdom, the Gorrell Committee on Control of Flying gave noise control the highest priority. However, it was not until post‐World War II that the public became disturbed by the continued high level of military aircraft operations, and this disturbance was aggravated by the rapid introduction of jet‐powered aircraft. Civil aviation developed rapidly and, as airports increased in size, and as aircraft movements doubled every five years, the surrounding communities expanded to the airport boundaries. These conditions of growth provided the ingredients for the aircraft noise problem. In the United Kingdom, all the major airports grew from military installations where little regard had been given to the environmental impact of these sites on the surrounding communities.

Details

Aircraft Engineering and Aerospace Technology, vol. 47 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 7 August 2009

Keivan Khademi Shamami and Madjid Birouk

This paper aims to describe the numerical simulation of a three‐dimensional turbulent free jet issuing from a sharp‐edged equilateral triangular orifice into still air.

Abstract

Purpose

This paper aims to describe the numerical simulation of a three‐dimensional turbulent free jet issuing from a sharp‐edged equilateral triangular orifice into still air.

Design/Methodology/approach

The numerical simulation was carried out by solving the governing three‐dimensional Reynolds‐averaged Navier‐Stokes equations. Several two‐equation eddy‐viscosity models (i.e. the standard k‐ε, renormalization group (RNG) k‐ε, realizable k‐ε, shear‐stress transport (SST) k‐ω), as well as the Reynolds stress models (i.e. the standard RSM and the SSG) were tested to simulate the flowfield. The numerical predictions were compared with experimental data in order to assess the capability and limitations of the various turbulent models examined in this work. Findings –The vena contracta effect was predicted by all the tested models. Among the eddy‐viscosity models only the realizable k‐ε model showed good agreement of the near‐field jet decay. None of the eddy‐viscosity models was capable of predicting the profiles of the jet turbulence intensities. The RSMs, especially the standard RSM, were able to produce much better predictions of the features of the jet in comparison with the eddy‐viscosity models. The standard RSM predictions were found to agree reasonably well with the experimental data.

Research limitations/implications

The conclusion, that among the tested RANS turbulence closure models, the RSM appeared the only one capable of reproducing reasonably well the experimental data concerns only the jet flow case examined here. Also, the average computational time for a single run was quite long, i.e. 340 h, but it is believed that parallel computing will reduce it considerably.

Originality/value

The numerical results reported in this paper provide a comparison between several RANS turbulence closure models for simulating a turbulent free jet issuing from an equilateral triangular nozzle.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 September 2021

Dawn Pradeeb S.A., Subramanian Thanigaiarasu and Nagarajakrishnan Premanand

Control over large-scale coherent structures and stream-wise vortices lead to enhanced entrainment/conservation of the jet which is desirable for most free jet applications such…

Abstract

Purpose

Control over large-scale coherent structures and stream-wise vortices lead to enhanced entrainment/conservation of the jet which is desirable for most free jet applications such as design of combustion chamber in jet engines and flame length elongation of welding torch used for metal cutting.

Design/methodology/approach

A co-flow nozzle with lip thickness of 2 mm, between the primary (inner) and secondary (outer) flow, is selected. Three nozzle combinations are used, i.e. C–C (circle–circle), C–E (circle–ellipse) and C–S (circle–square) for acquiring comparative data. For these nozzle combinations, inner nozzle exit plane is kept as a circle, whereas the outer nozzle exit planes are varied to circle, ellipse and square. The exit plane area of outer nozzle for the nozzle combinations has equivalent diameter, De. The nozzles are fabricated in a way that the outer nozzle can be rotated along the longitudinal axis, keeping the inner nozzle intact.

Findings

The C–C nozzle combination is effective in low Mach number regime in decaying the jet, when the rotational component is introduced. Around 30% reduction in the jet core length is observed for the C–C nozzle combinations without any lip. The C–E nozzle shows sedative result in decaying or preserving the jet. The C–S nozzle combination shows interesting phenomenon, whereby the low subsonic case tends to conserve the jet by 15% and the higher subsonic case tends to decay the jet by 10%.

Originality/value

The developed nozzle systems show both conservative and destructive effect on the jet, which is desirable for the mentioned applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 October 2005

M.R. Ahmed and S.D. Sharma

Turbulent mixing of two co‐axial jets having a low annular to core area ratio is enhanced by employing a chute mixer, directing part of the annular stream at 10° towards the core…

Abstract

Purpose

Turbulent mixing of two co‐axial jets having a low annular to core area ratio is enhanced by employing a chute mixer, directing part of the annular stream at 10° towards the core region. Aims to present results from measurements of time‐averaged and fluctuating components of velocity under cold flow conditions.

Design/methodology/approach

Experiments were conducted at a bypass ratio of 0.47 which is a typical value for low bypass turbofan engines. Contours of time‐averaged velocity and streamwise and transverse turbulence intensities were obtained by making detailed measurements close to the chutes. Distributions of time‐averaged velocity and turbulence intensity were obtained at different axial locations downstream of the chute mixer. Total and static pressure measurements were also performed.

Findings

The high velocity annular stream was found to quickly diffuse after entering through the chutes and mix with the core stream due to high turbulence generation. A strong transverse turbulence component enhanced the mixing of the streams. With the aid of the chute mixer, nearly complete mixing is achieved over a length of 5 duct radii. A higher total pressure loss of about 1.38 percent is the penalty paid for the enhanced mixing.

Originality/value

Provides results from experiments into the process of turbulent mixing of co‐axial jets.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 February 1990

Terry Ford, CEng and MRAeS

RELATED to a degree and overlapping in their effects on the world's airline fleets, the issues of ageing and noise were addressed at a recent Avmark conference which was sponsored…

Abstract

RELATED to a degree and overlapping in their effects on the world's airline fleets, the issues of ageing and noise were addressed at a recent Avmark conference which was sponsored by FFV Aerotech. The problems of dealing economically with a large number of unacceptably noisy aircraft and ensuring that older aircraft remain airworthy beyond their original design lives are critical issues challenging operators throughout the world. Dominant here are the contributions dealing specifically with engine and airframe problems and solutions.

Details

Aircraft Engineering and Aerospace Technology, vol. 62 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 9 August 2021

Zongyao Yang, Yong Shan and Jingzhou Zhang

This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status.

Abstract

Purpose

This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status.

Design/methodology/approach

Four exhaust modes are concerned, and the external flow field and fuselage temperature field are calculated by numerical simulation. The infrared radiation intensity distributions of the four models in hovering and cruising states are computed by the ray-tracing method.

Findings

Under the hover status, the exhaust plume is deflected to flow downward after it exhausts from the nozzle exit, upon the impact of the main-rotor downwash. Besides, the exhaust plume shows a “swirling” movement following the main-rotor rotational direction. The forward-flight flow helps prevent the hot exhaust plume from a collision with the helicopter fuselage generally for the cruise status. In general, the oblique-upward exhaust mode provides moderate infrared radiation intensities in all of the viewing directions, either under the hover or the cruise status. Compared with the hover status, the infrared radiation intensity distribution alters somewhat in cruise.

Originality/value

Illustrating the influences of exhaust direction on plume flow and helicopter infrared radiation and the differences of helicopter infrared radiation under hover and cruise statuses are identified. Finally, an appropriate exhaust mode is proposed to provide a better IR signature distribution.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 14