Search results

1 – 10 of over 1000
Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 August 2022

Devika E. and Saravanan A.

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems…

55

Abstract

Purpose

Intelligent prediction of node localization in wireless sensor networks (WSNs) is a major concern for researchers. The huge amount of data generated by modern sensor array systems required computationally efficient calibration techniques. This paper aims to improve localization accuracy by identifying obstacles in the optimization process and network scenarios.

Design/methodology/approach

The proposed method is used to incorporate distance estimation between nodes and packet transmission hop counts. This estimation is used in the proposed support vector machine (SVM) to find the network path using a time difference of arrival (TDoA)-based SVM. However, if the data set is noisy, SVM is prone to poor optimization, which leads to overlapping of target classes and the pathways through TDoA. The enhanced gray wolf optimization (EGWO) technique is introduced to eliminate overlapping target classes in the SVM.

Findings

The performance and efficacy of the model using existing TDoA methodologies are analyzed. The simulation results show that the proposed TDoA-EGWO achieves a higher rate of detection efficiency of 98% and control overhead of 97.8% and a better packet delivery ratio than other traditional methods.

Originality/value

The proposed method is successful in detecting the unknown position of the sensor node with a detection rate greater than that of other methods.

Details

International Journal of Pervasive Computing and Communications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 3 February 2023

M. Iadh Ayari and Sabri T.M. Thabet

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel…

Abstract

Purpose

This paper aims to study qualitative properties and approximate solutions of a thermostat dynamics system with three-point boundary value conditions involving a nonsingular kernel operator which is called Atangana-Baleanu-Caputo (ABC) derivative for the first time. The results of the existence and uniqueness of the solution for such a system are investigated with minimum hypotheses by employing Banach and Schauder's fixed point theorems. Furthermore, Ulam-Hyers (UH) stability, Ulam-Hyers-Rassias UHR stability and their generalizations are discussed by using some topics concerning the nonlinear functional analysis. An efficiency of Adomian decomposition method (ADM) is established in order to estimate approximate solutions of our problem and convergence theorem is proved. Finally, four examples are exhibited to illustrate the validity of the theoretical and numerical results.

Design/methodology/approach

This paper considered theoretical and numerical methodologies.

Findings

This paper contains the following findings: (1) Thermostat fractional dynamics system is studied under ABC operator. (2) Qualitative properties such as existence, uniqueness and Ulam–Hyers–Rassias stability are established by fixed point theorems and nonlinear analysis topics. (3) Approximate solution of the problem is investigated by Adomain decomposition method. (4) Convergence analysis of ADM is proved. (5) Examples are provided to illustrate theoretical and numerical results. (6) Numerical results are compared with exact solution in tables and figures.

Originality/value

The novelty and contributions of this paper is to use a nonsingular kernel operator for the first time in order to study the qualitative properties and approximate solution of a thermostat dynamics system.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 April 2024

Suman Das and Ambika Prasad Pati

This study aims to investigate whether various types of risks faced by the publicly listed commercial banks of India and Bangladesh are driven by market power and provides…

Abstract

Purpose

This study aims to investigate whether various types of risks faced by the publicly listed commercial banks of India and Bangladesh are driven by market power and provides comparative insights from both economies.

Design/methodology/approach

By using the adjusted Lerner index to gauge bank market power and applying the generalised methods of moments (GMM) regression approach, the research delved into the relationship between bank market power and three distinct facets of risk across a sample of 26 publicly listed commercial banks in India and 22 listed banks in Bangladesh spanning from 2011 to 2022.

Findings

The results indicate that for Bangladesh, both “competition fragility” and “competition stability” viewpoints coexist simultaneously across all risk types, supporting a nonlinear relationship between market power and risk. However, in the Indian context, a nonlinear association exists only in the case of credit risk, while the relationship with insolvency risk is linear, substantiating the “competition fragility view”. Apart from market power and bank-specific variables, GDP growth rate has emerged as a prominent driver across all risk categories in both countries.

Research limitations/implications

The filtration of banks is a limitation that might have influenced the outcomes. This study recommends that the Reserve Bank of India encourages further bank consolidation. Along the same line, Bangladesh Bank should closely oversee the growing competitive landscape. Furthermore, the regulators must monitor the elevated levels of non-performing loans to reduce credit risk so as to bolster the stability of their respective banking sectors.

Originality/value

This comparative study is the first attempt to analyse the market power and risk relationship and includes a novel bank-specific variable, i.e. technology, apart from other established variables.

Details

Journal of Financial Regulation and Compliance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1358-1988

Keywords

Article
Publication date: 27 November 2023

Min Guo, Naiding Yang, Jingbei Wang, Hui Liu and Fawad Sharif Sayed Muhammad

Previous research has analyzed the consequence of network stability; however, little is known about how partner type diversity influence network stability in R&D network. Based on…

Abstract

Purpose

Previous research has analyzed the consequence of network stability; however, little is known about how partner type diversity influence network stability in R&D network. Based on knowledge-based view and social network theory, the purpose of this paper is to unravel the internal mechanisms between partner type diversity and network stability through the mediating role of knowledge recombination in R&D network.

Design/methodology/approach

The authors collected an unbalanced panel patent data set from information communication technology industry for the period 1994–2016. Then, the authors tested the different dimensions of partner type variety and its relevance in the R&D network and the mediating role of knowledge recombination through adopting the multiple linear regression.

Findings

Results indicate an inverted U-shaped relationship between partner type diversity (variety and relevance) and network stability, whereas knowledge recombination partially mediate these relationships.

Originality/value

From the perspective of R&D networks, this paper explores that there are the under-researched phenomena the antecedent of network stability through nodal attributes (i.e. partner type variety and partner type relevance). Moreover, this paper empirically examined the mediating role of knowledge recombination in the partner type diversity–network stability relationships. The novel perspective allows focal firm to recognize importance of nodal attributes, which are critical to fully excavate the potential capabilities of cooperating partners in R&D network.

Details

Journal of Knowledge Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 24 October 2023

Ines Ben Salah Mahdi, Mariem Bouaziz and Mouna Boujelbène Abbes

Corporate social responsibility (CSR) and fintech have emerged as critical megatrends in the banking industry. This study aims to examine the impact of financial technology on the…

Abstract

Purpose

Corporate social responsibility (CSR) and fintech have emerged as critical megatrends in the banking industry. This study aims to examine the impact of financial technology on the relationship between CSR and banks' financial stability. Specifically, it investigates the moderating effect of fintech on the association between CSR and the financial stability of conventional banks operating in Qatar, UAE, Saudi Arabia, Kuwait, Bahrain, Jordan, Pakistan and Turkey from 2010 to 2021.

Design/methodology/approach

To achieve the authors’ objective, the authors apply Baron and Kenny's three-link model, tested with fixed and random effects regression models.

Findings

The results reveal that the development of fintech decreases banks' financial stability, whereas it promotes banks' involvement in CSR strategies. Furthermore, the findings indicate that fintech plays a moderating role in the relationship between CSR and financial stability. It positively moderates the impact of CSR on financial stability. The robustness analysis highlights the mutual reinforcement of fintech and CSR dimensions in improving the financial stability of banks. Thus, by fostering community and product responsibility, fintech could enhance the financial stability of banks.

Practical implications

Finally, the authors recommend that banks focus more on developing technological and environmentally friendly financial products.

Originality/value

This study contributes significantly by providing valuable insights for managers and policymakers seeking to improve banks' financial stability through the simultaneous adoption of new financial technology products and the strong commitment to CSR practices.

Details

EuroMed Journal of Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1450-2194

Keywords

Article
Publication date: 17 January 2024

Peterson K. Ozili

This study aims to investigate the impact of terrorism on financial inclusion that is achieved through automated teller machine penetration and bank branch expansion.

Abstract

Purpose

This study aims to investigate the impact of terrorism on financial inclusion that is achieved through automated teller machine penetration and bank branch expansion.

Design/methodology/approach

Eight countries that are the most terrorized countries in the world were analysed using the panel fixed effect regression model and the generalized linear model.

Findings

The results provide evidence that terrorism reduces the level of financial inclusion in countries experiencing terrorism, but the presence of strong legal institutions, accountability governance institutions and political stability governance institutions mitigate the adverse effect of terrorism on financial inclusion.

Originality/value

A growing literature has shown that terrorism affects the economy, yet little is known about its impact on financial inclusion.

Details

Safer Communities, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-8043

Keywords

1 – 10 of over 1000