Search results

1 – 10 of 408
Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 9 April 2024

Long Liu, Lifeng Wang and Ziwang Xiao

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the…

Abstract

Purpose

The combination of an Engineered Cementitious Composite (ECC) layer and steel plate to reinforce RC beams (ESRB) is a new strengthening method. The ESRB was proposed based on the steel plate at the bottom of RC beams, aiming to solve the problem of over-reinforced RC beams and improve the bearing capacity of RC beams without affecting their ductility.

Design/methodology/approach

In this paper, the finite element model of ESRB was established by ABAQUS. The results were compared with the experimental results of ESRB in previous studies and the reliability of the finite element model was verified. On this basis, parameters such as the width of the steel plate, thickness of the ECC layer, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar were analyzed by the verified finite element model. Based on the load–deflection curve of ESRB, ESRB was discussed in terms of ultimate bearing capacity and ductility.

Findings

The results demonstrate that when the width of the steel plate increases, the ultimate load of ESRB increases to 133.22 kN by 11.58% as well as the ductility index increases to 2.39. With the increase of the damage degree of the original beam, the ultimate load of ESRB decreases by 23.7%–91.09 kN and the ductility index decreases to 1.90. With the enhancement of the cross-sectional area of longitudinal tensile rebar, the ultimate bearing capacity of ESRB increases to 126.75 kN by 6.2% and the ductility index elevates to 2.30. Finally, a calculation model for predicting the flexural capacity of ESRB is proposed. The calculated results of the model are in line with the experimental results.

Originality/value

Based on the comparative analysis of the test results and numerical simulation results of 11 test beams, this investigation verified the accuracy and reliability of the finite element simulation from the aspects of load–deflection curve, characteristic load and failure mode. Furthermore, based on load–deflection curve, the effects of steel plate width, ECC layer thickness, damage degree of the original beam and cross-sectional area of longitudinal tensile rebar on the ultimate bearing capacity and ductility of ESRB were discussed. Finally, a simplified method was put forward to further verify the effectiveness of ESRB through analytical calculation.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 15 December 2023

Muhammad Arif Mahmood, Chioibasu Diana, Uzair Sajjad, Sabin Mihai, Ion Tiseanu and Andrei C. Popescu

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification…

Abstract

Purpose

Porosity is a commonly analyzed defect in the laser-based additive manufacturing processes owing to the enormous thermal gradient caused by repeated melting and solidification. Currently, the porosity estimation is limited to powder bed fusion. The porosity estimation needs to be explored in the laser melting deposition (LMD) process, particularly analytical models that provide cost- and time-effective solutions compared to finite element analysis. For this purpose, this study aims to formulate two mathematical models for deposited layer dimensions and corresponding porosity in the LMD process.

Design/methodology/approach

In this study, analytical models have been proposed. Initially, deposited layer dimensions, including layer height, width and depth, were calculated based on the operating parameters. These outputs were introduced in the second model to estimate the part porosity. The models were validated with experimental data for Ti6Al4V depositions on Ti6Al4V substrate. A calibration curve (CC) was also developed for Ti6Al4V material and characterized using X-ray computed tomography. The models were also validated with the experimental results adopted from literature. The validated models were linked with the deep neural network (DNN) for its training and testing using a total of 6,703 computations with 1,500 iterations. Here, laser power, laser scanning speed and powder feeding rate were selected inputs, whereas porosity was set as an output.

Findings

The computations indicate that owing to the simultaneous inclusion of powder particulates, the powder elements use a substantial percentage of the laser beam energy for their melting, resulting in laser beam energy attenuation and reducing thermal value at the substrate. The primary operating parameters are directly correlated with the number of layers and total height in CC. Through X-ray computed tomography analyses, the number of layers showed a straightforward correlation with mean sphericity, while a converse relation was identified with the number, mean volume and mean diameter of pores. DNN and analytical models showed 2%–3% and 7%–9% mean absolute deviations, respectively, compared to the experimental results.

Originality/value

This research provides a unique solution for LMD porosity estimation by linking the developed analytical computational models with artificial neural networking. The presented framework predicts the porosity in the LMD-ed parts efficiently.

Article
Publication date: 27 September 2023

Jiongyi Yan, Emrah Demirci and Andrew Gleadall

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry…

Abstract

Purpose

Extrusion width, the width of printed filaments, affects multiple critical aspects in mechanical properties in material extrusion additive manufacturing: filament geometry, interlayer load-bearing bonded area and fibre orientation for fibre-reinforced composites. However, this study aims to understand the effects of extrusion width on 3D printed composites, which has never been studied systematically.

Design/methodology/approach

Four polymers with and without short-fibre reinforcement were 3D printed into single-filament-wide specimens. Tensile properties, mechanical anisotropy and fracture mechanisms were evaluated along the direction of extruded filaments (F) and normal to the interlayer bond (Z). Extrusion width, nozzle temperature and layer height were studied separately via single-variable control. The extrusion width was controlled by adjusting polymer flow in the manufacturing procedure (gcode), where optimisation can be achieved with software/structure design as opposed to hardware.

Findings

Increasing extrusion width caused a transition from brittle to ductile fracture, and greatly reduced directional anisotropy for strength and ductility. For all short fibre composites, increasing width led to an increase in strain-at-break and decreased strength and stiffness in the F direction. In the Z direction, increasing width led to increased strength and strain-at-break, and stiffness decreased for less ductile materials but increased for more ductile materials.

Originality/value

The transformable fracture reveals the important role of extrusion width in processing-structure-property correlation. This study reveals a new direction for future research and industrial practice in controlling anisotropy in additive manufacturing. Increasing extrusion width may be the simplest way to reduce anisotropy while improving printing time and quality in additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2024

Ali Hashemi Baghi and Jasmin Mansour

Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can…

Abstract

Purpose

Fused Filament Fabrication (FFF) is one of the growing technologies in additive manufacturing, that can be used in a number of applications. In this method, process parameters can be customized and their simultaneous variation has conflicting impacts on various properties of printed parts such as dimensional accuracy (DA) and surface finish. These properties could be improved by optimizing the values of these parameters.

Design/methodology/approach

In this paper, four process parameters, namely, print speed, build orientation, raster width, and layer height which are referred to as “input variables” were investigated. The conflicting influence of their simultaneous variations on the DA of printed parts was investigated and predicated. To achieve this goal, a hybrid Genetic Algorithm – Artificial Neural Network (GA-ANN) model, was developed in C#.net, and three geometries, namely, U-shape, cube and cylinder were selected. To investigate the DA of printed parts, samples were printed with a central through hole. Design of Experiments (DoE), specifically the Rotational Central Composite Design method was adopted to establish the number of parts to be printed (30 for each selected geometry) and also the value of each input process parameter. The dimensions of printed parts were accurately measured by a shadowgraph and were used as an input data set for the training phase of the developed ANN to predict the behavior of process parameters. Then the predicted values were used as input to the Desirability Function tool which resulted in a mathematical model that optimizes the input process variables for selected geometries. The mean square error of 0.0528 was achieved, which is indicative of the accuracy of the developed model.

Findings

The results showed that print speed is the most dominant input variable compared to others, and by increasing its value, considerable variations resulted in DA. The inaccuracy increased, especially with parts of circular cross section. In addition, if there is no need to print parts in vertical position, the build orientation should be set at 0° to achieve the highest DA. Finally, optimized values of raster width and layer height improved the DA especially when the print speed was set at a high value.

Originality/value

By using ANN, it is possible to investigate the impact of simultaneous variations of FFF machines’ input process parameters on the DA of printed parts. By their optimization, parts of highly accurate dimensions could be printed. These findings will be of significant value to those industries that need to produce parts of high DA on FFF machines.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 February 2024

Boyi Li, Miao Tian, Xiaohan Liu, Jun Li, Yun Su and Jiaming Ni

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors…

Abstract

Purpose

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization.

Design/methodology/approach

A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization.

Findings

Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric.

Practical implications

The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research.

Originality/value

The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Article
Publication date: 21 December 2023

Rafael Pereira Ferreira, Louriel Oliveira Vilarinho and Americo Scotti

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards…

Abstract

Purpose

This study aims to propose and evaluate the progress in the basic-pixel (a strategy to generate continuous trajectories that fill out the entire surface) algorithm towards performance gain. The objective is also to investigate the operational efficiency and effectiveness of an enhanced version compared with conventional strategies.

Design/methodology/approach

For the first objective, the proposed methodology is to apply the improvements proposed in the basic-pixel strategy, test it on three demonstrative parts and statistically evaluate the performance using the distance trajectory criterion. For the second objective, the enhanced-pixel strategy is compared with conventional strategies in terms of trajectory distance, build time and the number of arcs starts and stops (operational efficiency) and targeting the nominal geometry of a part (operational effectiveness).

Findings

The results showed that the improvements proposed to the basic-pixel strategy could generate continuous trajectories with shorter distances and comparable building times (operational efficiency). Regarding operational effectiveness, the parts built by the enhanced-pixel strategy presented lower dimensional deviation than the other strategies studied. Therefore, the enhanced-pixel strategy appears to be a good candidate for building more complex printable parts and delivering operational efficiency and effectiveness.

Originality/value

This paper presents an evolution of the basic-pixel strategy (a space-filling strategy) with the introduction of new elements in the algorithm and proves the improvement of the strategy’s performance with this. An interesting comparison is also presented in terms of operational efficiency and effectiveness between the enhanced-pixel strategy and conventional strategies.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2022

Nursyamsi Nursyamsi, Johannes Tarigan, Muhammad Aswin, Badorul Hisham Abu Bakar and Harianto Hardjasaputra

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading…

Abstract

Purpose

Damage to reinforced concrete (RC) structural elements is inevitable. Such damage can be the result of several factors, including aggressive environmental conditions, overloading, inadequate design, poor work execution, fire, storm, earthquakes etc. Therefore, repairing and strengthening is one way to improve damaged structures, so that they can be reutilized. In this research, the use of an ultra high-performance fibre-reinforced concrete (UHPFRC) layer is proposed as a strengthening material to rehabilitate damaged-RC beams. Different strengthening schemes pertaining to the structural performance of the retrofitted RC beams due to the flexural load were investigated.

Design/methodology/approach

A total of 13 normal RC beams were prepared. All the beams were subjected to a four-point flexural test. One beam was selected as the control beam and tested to failure, whereas the remaining beams were tested under a load of up to 50% of the ultimate load capacity of the control beam. The damaged beams were then strengthened using a UHPFRC layer with two different schemes; strip-shape and U-shape schemes, before all the beams were tested to failure.

Findings

Based on the test results, the control beam and all strengthened beams failed in the flexural mode. Compared to the control beam, the damaged-RC beams strengthened using the strip-shape scheme provided an increase in the ultimate load capacity ranging from 14.50% to 43.48% (or an increase of 1.1450 to 1.4348 times), whereas for the U-shape scheme beams ranged from 48.70% to 149.37% (or an increase of 1.4870–2.4937 times). The U-shape scheme was more effective in rehabilitating the damaged-RC beams. The UHPFRC mixtures are workable, as well easy to place and cast into the formworks. Furthermore, the damaged-RC beams strengthened using strip-shape scheme and U-shape scheme generated ductility factors of greater than 4 and 3, respectively. According to Eurocode8, these values are suitable for seismically active regions. Therefore, the strengthened damaged-RC beams under this study can quite feasibly be used in such regions.

Research limitations/implications

Observations of crack patterns were not accompanied by measurements of crack widths due to the unavailability of a microcrack meter in the laboratory. The cost of the strengthening system application were not evaluated in this study, so the users should consider wisely related to the application of this method on the constructions.

Practical implications

Rehabilitation of the damaged-RC beams exhibited an adequate structural performance, where all strengthened RC beams fail in the flexural mode, as well as having increment in the failure load capacity and ductility. So, the used strengthening system in this study can be applied for the building construction in the seismic regions.

Social implications

Aside from equipment, application of this strengthening system need also the labours.

Originality/value

The use of sand blasting on the surfaces of the damaged-RC beams, as well as the application of UHPFRC layers of different thicknesses and shapes to strengthen the damaged-RC beams, provides a novel innovation in the strengthening of damaged-RC beams, which can be applicable to either bridge or building constructions.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 408