Search results

1 – 10 of 19
Article
Publication date: 23 April 2024

Naveen Srinivas Madugula, Yogesh Kumar, Vimal K.E.K and Sujeet Kumar

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six…

Abstract

Purpose

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six strategies, namely, heat treatment process, inter pass cooling process, inter pass cold rolling process, peening process, friction stir processing and oscillation process.

Design/methodology/approach

To overcome the lack of certainty associated with correlations and relationships in quality functional deployment, fuzzy numbers have been integrated with the quality functional deployment framework. Twenty performance measures have been identified from the literature under five groups, namely, mechanical properties, physical properties, geometrical properties, cost and material properties. Using house of quality weights are allocated to performance measures and groups, relationships are established between performance measures and strategies, and correlations are assigned between strategies. Finally, for each strategy, relative importance, score and crisp values are calculated.

Findings

Inter pass cold rolling process strategy is computed with the highest crisp value of 15.80 which is followed by peening process, heat treatment process, friction stir processing, inter pass cooling process,] and oscillation process strategy.

Originality/value

To the best of the authors’ knowledge, there has been no research in the literature that analyzes the strategies to improve the quality and productivity of the wire arc additive manufacturing process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 September 2023

Jiabo Chen, Xiaokai Guo, Hao Liu, Xuantong Lv, Shichuan Fan, Liankui Wu, Fahe Cao and Qingqing Sun

This study aims to discuss the influences of surface severe plastic deformation (S2PD) on the electrochemical corrosion, pitting corrosion, intergranular corrosion, stress…

Abstract

Purpose

This study aims to discuss the influences of surface severe plastic deformation (S2PD) on the electrochemical corrosion, pitting corrosion, intergranular corrosion, stress corrosion cracking of aluminum (Al) alloys and attempt to correlate the microstructural/compositional changes with the performances.

Design/methodology/approach

This study provides a novel gradient design of structure/composition caused by S2PD for the purpose of enhancing Al alloys’ corrosion resistance.

Findings

S2PD has a significant effect on corrosion behavior of Al alloys through tuning the grain size, residual stress, composition, grain boundary phase and second phase particle distribution.

Originality/value

Although Al alloys are known to form a protective Al2O3 film, corrosion is a major challenge for the longevity of Al structures across numerous industries, especially for the infrastructures made of high-strength Al alloys. Traditional strategies of improving corrosion resistance of Al alloys heavily relied on alloying and coatings. In this review, gradient design of structure/composition caused by S2PD provides a novel strategy for corrosion protection of Al alloys, especially in the enhancement of localized corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 3 October 2023

Zonglin Lei, Zunge Li and Yangyi Xiao

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Abstract

Purpose

This study aims to investigate the surface modification on 20CrMnTi gear steel individually treated by diamond-like carbon films and nitride coatings.

Design/methodology/approach

For this purpose, the mechanical properties of a-C:H, ta-C and AlCrSiN coatings are characterized by nano-indentation and scratch tests. The friction and wear behaviors of these three coatings are evaluated by ball-on-disc tribological experiments under dry contact conditions.

Findings

The results show that the a-C:H coating has the highest coating-substrate adhesion strength (495 mN) and the smoothest surface (Ra is about 0.045 µm) compared with the other two coatings. The AlCrSiN coating shows the highest mean coefficient of friction (COF), whereas the ta-C coating exhibits the lowest one (steady at about 0.16). The carbon-based coatings possess excellent self-lubricating properties compared with nitride ceramic ones, which effectively reduce the COF by about 64%. The major failure mode of carbon-based coatings in dry contact is slight abrasive wear. The damage of AlCrSiN coating is mainly adhesive wear and abrasive wear.

Originality/value

It is suggested that the carbon-based film can effectively improve the friction-reducing and wear resistance performance of the gear steel surface, which has a promising application prospect in the mechanical transmission field.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0129/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2023

Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang and Jinglong Qu

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’…

Abstract

Purpose

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’ surface is analyzed to illustrate the corrosion mechanism.

Design/methodology/approach

Electrochemical tests were used to investigated the corrosion resistance of GH4738 superalloys with different UIT densities. The microstructure was compared before and after the corrosion tests. The passive film characterization was described by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) tests.

Findings

The compressive residual stress and corrosion resistance of the specimens significantly increased after UIT. The order of corrosion resistance is related to the UIT densities, i.e. 1.96 s/mm2 > 1.71 s/mm2 > 0.98 s/mm2 > as-cast. The predominant constituents of the passive films are TiO2, Cr2O3, MoO3 and NiO. The passive film on the specimen with 1.96 s/mm2 UIT density has the highest volume fraction of Cr2O3 and MoO3, which is the main reason for its superior corrosion resistance.

Originality/value

This study provides quantitative corrosion data for GH4738 superalloys treated by ultrasonic impact. The corrosion mechanism is explained by the passive film’s characterization.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 May 2024

Gang Wang, Mian Wang, ZiHan Wang, GuangTao Xu, MingHao Zhao and Lingxiao Li

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Abstract

Purpose

The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.

Design/methodology/approach

The surface-modified layer of 18CrNiMo7-6 alloy steel was delaminated to study its hydrogen embrittlement characteristics via hydrogen permeation, electrochemical hydrogen charging and scratch experiments.

Findings

The results showed that the diffusion coefficients of hydrogen in the surface and matrix layers are 3.28 × 10−7 and 16.67 × 10−7 cm2/s, respectively. The diffusible-hydrogen concentration of the material increases with increasing hydrogen-charging current density. For a given hydrogen-charging current density, the diffusible-hydrogen concentration gradually decreases with increasing depth in the surface-modified layer. Fracture toughness decreases with increasing diffusible-hydrogen concentration, so the susceptibility to hydrogen embrittlement decreases with increasing depth in the surface-modified layer.

Originality/value

The reliability of the scratch method in evaluating the fracture toughness of the surface-modified layer material is verified. An empirical formula is given for fracture toughness as a function of diffused-hydrogen concentration.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 January 2024

Shucai Yang, Dawei Wang and Zhanjun Xiao

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical…

Abstract

Purpose

The purpose is to explore the improvement mechanism of coating and laser micro-texture on the surface properties of cemented carbide, so as to give full play to the technical advantages of both and improve the overall surface properties of the material.

Design/methodology/approach

The surface hardness of the coating was measured by a microhardness tester, the surface element composition of the coating was tested by an energy spectrum analyzer and the phase was measured by an X-ray diffractometer to observe the surface morphology after the friction and wear experiment.

Findings

Laser will generate new oxide and nitride films on the surface of the coating, which will improve the hardness of the coating surface and the bonding strength between the coating and the substrate. The surface micro-texture can collect wear debris during the friction process, reduce abrasive wear and play a good role in inhibiting the expansion of the coating failure zone.

Originality/value

Most of the research on traditional laser coating is to process micro-texture first and then coating. This study is the opposite. In this paper, the modification effect of laser on the coating surface is explored, and the parameters of laser and coating are optimized, which paves the way for the subsequent milling experiments of textured coating tools.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhi Li, YiYuan Du, Zhiming Xu, Xuqian Qiao and Hong Zhang

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication…

59

Abstract

Purpose

The purpose of this study is to investigate the influence of surface texture on the subsurface characteristics of contact interfaces under elastohydrodynamic lubrication condition. As a typical contact form of gears and bearings, the optimization of friction characteristics at the elastohydrodynamic lubrication (EHL) interface has attracted the attention of scholars. Laser surface texturing is a feasible optimization solution, but there have been concerns about whether the surface texture of high-pair parts will affect their fatigue life.

Design/methodology/approach

To examine the impact of texture preparation on the subsurface characteristics of high-pair interfaces under EHL conditions, a point contact EHL model is developed that takes into account the effect of textured surface topography. The pressure and thickness of the oil film are calculated as input parameters under different loads and entrainment velocities. The finite element method is used to simulate the impact of textures with varying diameters, densities and depths on the subsurface characteristics of the elastohydrodynamic interface. According to ISO 25178, analyze the relationship between 3D topography parameters and subsurface characteristics and study the trend of friction characteristics and subsurface characteristics based on the results of the ball on disc friction tests.

Findings

The outcomes suggest that under different rotational velocity and load conditions, the textured surfaces exhibit improved friction reduction effects; however, the creation of textures can result in significant subsurface plastic deformation and local peeling. The existence of texture makes the larger stress zone in the subsurface layer closer to the surface, leading to fatigue failure near the surface. Reasonable design parameters can help enhance the attributes of the subsurface. A smaller Sa and a Str greater than 0.5 can achieve ideal subsurface properties on the textured surface.

Originality/value

This paper investigates the influence of surface texture on the friction and subsurface characteristics of EHL interfaces and analyzes the impact of surface texture on interface contact performance while achieving lubrication improvement functional characteristics. The results provide theoretical support for the optimization design and functional regulation of surface texture in EHL interfaces.

Peer review

The peer review history for this article is https://publons.com/publon/10.1108/ILT-10-2023-0324/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Amin Barzegar, Mohammadreza Farahani and Amirreza Gomroki

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable…

Abstract

Purpose

Material extrusion-based additive manufacturing is a prominent manufacturing technique to fabricate complex geometrical three-dimensional (3D) parts. Despite the indisputable advantages of material extrusion-based technique, the poor surface and subsurface integrity hinder the industrial application of this technology. The purpose of this study is introducing the hot air jet treatment (HAJ) technique for surface treatment of additive manufactured parts.

Design/methodology/approach

In the presented research, novel theoretical formulation and finite element models are developed to study and model the polishing mechanism of printed parts surface through the HAJ technique. The model correlates reflow material volume, layer width and layer height. The reflow material volume is a function of treatment temperature, treatment velocity and HAJ velocity. The values of reflow material volume are obtained through the finite element modeling model due to the complexity of the interactions between thermal and mechanical phenomena. The theoretical model presumptions are validated through experiments, and the results show that the treatment parameters have a significant impact on the surface characteristics, hardness and dimensional variations of the treated surface.

Findings

The results demonstrate that the average value of error between the calculated theoretical results and experimental results is 14.3%. Meanwhile, the 3D plots of Ra and Rq revealed that the maximum values of Ra and Rq reduction percentages at 255°C, 270°C, 285°C and 300°C treatment temperatures are (35.9%, 33.9%), (77.6%,76.4%), (94%, 93.8%) and (85.1%, 84%), respectively. The scanning electron microscope results illustrate three different treatment zones and the treatment-induced and manufacturing-induced entrapped air relief phenomenon. The measured results of hardness variation percentages and dimensional deviation percentages at different regimes are (8.33%, 0.19%), (10.55%, 0.31%) and (−0.27%, 0.34%), respectively.

Originality/value

While some studies have investigated the effect of the HAJ process on the structural integrity of manufactured items, there is a dearth of research on the underlying treatment mechanism, the integrity of the treated surface and the subsurface characteristics of the treated surface.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 19