Search results

1 – 10 of 177
Article
Publication date: 8 March 2023

Jordi Vila-Pérez, Matteo Giacomini and Antonio Huerta

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using…

Abstract

Purpose

This study aims to assess the robustness and accuracy of the face-centred finite volume (FCFV) method for the simulation of compressible laminar flows in different regimes, using numerical benchmarks.

Design/methodology/approach

The work presents a detailed comparison with reference solutions published in the literature –when available– and numerical results computed using a commercial cell-centred finite volume software.

Findings

The FCFV scheme provides first-order accurate approximations of the viscous stress tensor and the heat flux, insensitively to cell distortion or stretching. The strategy demonstrates its efficiency in inviscid and viscous flows, for a wide range of Mach numbers, also in the incompressible limit. In purely inviscid flows, non-oscillatory approximations are obtained in the presence of shock waves. In the incompressible limit, accurate solutions are computed without pressure correction algorithms. The method shows its superior performance for viscous high Mach number flows, achieving physically admissible solutions without carbuncle effect and predictions of quantities of interest with errors below 5%.

Originality/value

The FCFV method accurately evaluates, for a wide range of compressible laminar flows, quantities of engineering interest, such as drag, lift and heat transfer coefficients, on unstructured meshes featuring distorted and highly stretched cells, with an aspect ratio up to ten thousand. The method is suitable to simulate industrial flows on complex geometries, relaxing the requirements on mesh quality introduced by existing finite volume solvers and alleviating the need for time-consuming manual procedures for mesh generation to be performed by specialised technicians.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2023

Ebrahim Tavousi, Noel Perera, Dominic Flynn and Reaz Hasan

The purpose of the study is to numerically investigate the characteristics of laminar heat transfer and fluid flow in a double tube heat exchanger (DTHE) using water-aluminum…

Abstract

Purpose

The purpose of the study is to numerically investigate the characteristics of laminar heat transfer and fluid flow in a double tube heat exchanger (DTHE) using water-aluminum oxide (Al2O3) nanofluid. The study examines the effects of nanofluid in both counter and parallel flow configurations. Furthermore, an exergy analysis is conducted to assess the impact of nanofluid on exergy destruction.

Design/methodology/approach

The single-phase method has been used for Al2O3 nanoparticles in water as base fluid in a laminar regime for Reynolds numbers from 400 to 2,000. The effects of nanoparticle volume fractions (0 to 0.1), Nusselt number, Reynolds number, heat transfer coefficient, pressure drop, performance evaluation criteria (PEC) and the impact of counter and parallel flow direction have been studied.

Findings

The findings indicate that the incorporation of nanoparticles into the water enhances the heat transfer rate of DTHE. This enhancement is attributed to the improved thermal properties of the working fluid and its impact on the thermal boundary layer. Nusselt number, heat transfer coefficient, and PEC increase by approximately 19.5%, 58% and 1.2, respectively, in comparison to pure water. Conversely, the pressure drop experiences a 5.3 times increase relative to pure water. Exergy analysis reveals that nanofluids exhibit lower exergy destruction compared to pure water. The single-phase method showed better agreement with the experimental results compared to the two-phase method.

Originality/value

Dimensionless correlations were derived and validated with experimental and numerical results for the Nusselt number and PEC for both counter and parallel flow configurations based on the Reynolds number and nanoparticles volume fraction with high accuracy to predict the performance of DTHE without performing time-consuming simulations. Also, an exergy analysis was performed to compare the exergy destruction between nanofluid and pure water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2023

Sumit Kumar Mehta and Sukumar Pati

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and…

Abstract

Purpose

The purpose of this paper is to investigate computationally the hydrothermal characteristics for forced convective laminar flow of water through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks.

Design/methodology/approach

The governing equations are solved computationally using a finite element method–based numerical solver COMSOL Multiphysics® for the following range of parameters: 10 ≤ Reynolds number (Re) ≤ 500 and 10–4 ≤ Darcy number (Da) ≤ 10–1.

Findings

The presence of porous blocks significantly influences the heat transfer rate, and the value of local Nusselt number increases with the increase in Da. The value of the average Nusselt number decreases with Da for the top wall and the same is enhanced for the bottom wall of the wavy channel with porous blocks (WCPB). The value of the average Nusselt number for WCPB is significantly higher than that of the wavy channel without porous block (WCWPB), plane channel without porous block (PCWPB) and plane channel with the porous block (PCPB) at higher Re. For PCPB, the performance factor (PF) is always higher than that of WCWPB and WCPB for Da = 10–4 and Da = 10–3. Also, PF for WCPB is higher than that of WCWPB for higher Re except for Da = 10–4. Further, the value of for WCPB is higher than that of PCPB at Da = 10–2 and 10–1 at Re = 500.

Practical implications

The current study is useful in designing efficient heat exchangers for process plants, solar collectors and aerospace applications.

Originality/value

The analysis of thermo-hydraulic characteristics for laminar flow through a channel with a top wavy wall and a flat bottom wall having metallic porous blocks have been analyzed for the first time. Further, a comparative assessment of the performance has been performed with a wavy channel without a porous block, a plane channel without a porous block and a plane channel with porous blocks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 January 2022

Serhat Yilmaz and Gülten Altıokka Yılmaz

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical…

Abstract

Purpose

The development of robust control algorithms for the position, velocity and trajectory control of unmanned underwater vehicles (UUVs) depends on the accuracy of their mathematical models. Accuracy of the model is determined by precise estimation of the UUV hydrodynamic parameters. The purpose of this study is to determine the hydrodynamic forces and moments acting on an underwater vehicle with complex body geometry and moving at low speeds and to achieve the accurate coefficients associated with them.

Design/methodology/approach

A three-dimensional (3D) computer-aided design (CAD) model of UUV is designed with one-to-one dimensions. 3D fluid flow simulations are conducted using computational fluid dynamics (CFD) software programme in the solution of Navier Stokes equations for laminar and turbulent flow analysis. The coefficients depending on the hydrodynamic forces and moments are determined by the external flow analysis using the CFD programme. The Flow Simulation k-ε turbulence model is used for the transition from laminar flow to turbulent flow. Hydrodynamic properties such as lift and drag coefficients and roll and yaw moment coefficients are calculated. The parameters are compared with the coefficient values found by experimental methods.

Findings

Although the modular type UUV has a complex body geometry, the comparative results of the experiments and simulations confirm that the defined model parameters are accurate and close to the actual experimental values. In the proposed k-ε method, the percentage error in the estimation of drag and lifting coefficients is decreased to 4.2% and 8.39%, respectively.

Practical implications

The model coefficients determined in this study can be used in high-level control simulations which leads to the development of robust real-time controllers for complex-shaped modular UUVs.

Originality/value

The Lucky Fin UUV with 4 degrees of freedom is a specific design and its CAD model is first extracted. Verification of simulation results by experiments is generally less referenced in studies. However, it provides more precise parameter identification of the model. Proposed study offers a simple and low-cost experimental measurement method for verification of the hydrodynamic parameters. The extracted model and coefficients are worthwhile references for the analysis of modular type UUVs.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 December 2023

Zhijia Xu and Minghai Li

The asymmetry of the velocity profile caused by geometric deformation, complex turbulent motion and other factors must be considered to effectively use the flowmeter on any…

Abstract

Purpose

The asymmetry of the velocity profile caused by geometric deformation, complex turbulent motion and other factors must be considered to effectively use the flowmeter on any section. This study aims to better capture the flow field information and establish a model to predict the profile velocity, we take the classical double elbow as the research object and propose to divide the flow field into three categories with certain common characteristics.

Design/methodology/approach

The deep learning method is used to establish the model of multipath linear velocity fitting profile average velocity. A total of 480 groups of data are taken for training and validation, with ten integer velocity flow fields from 1 m/s to 10 m/s. Finally, accuracy research with relative error as standard is carried out.

Findings

The numerical experiment yielded the following promising results: the maximum relative error is approximately 1%, and in the majority of cases, the relative error is significantly lower than 1%. These results demonstrate that it surpasses the classical optimization algorithm Equal Tab (5%) and the traditional artificial neural network (3%) in the same scenario. In contrast with the previous research on a fixed profile, we focus on all the velocity profiles of a certain length for the first time, which can expand the application scope of a multipath ultrasonic flowmeter and promote the research on flow measurement in any section.

Originality/value

This work proposes to divide the flow field of double elbow into three categories with certain common characteristics to better capture the flow field information and establish a model to predict the profile velocity.

Details

Sensor Review, vol. 44 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 May 2023

Ahmad Reza Roozbehi, Mohammad Zabetian Targhi, Mohammad Mahdi Heyhat and Ala Khatibi

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat…

Abstract

Purpose

This numerical study aims to investigate the modification of the hexagonal pin fin geometry to enhance both the thermal and hydraulic performance of the copper micropin fin heat sink with single-phase water coolant in a laminar regime. The heat sink performance evaluation criteria have been investigated for the parametric effects of vertex angle θ (10–120) and relative length (RL) (0.25–9) of hexagonal pin fins.

Design/methodology/approach

To carry out research and reduce the computational cost, only one heat sink unit is simulated and analyzed using periodic boundary conditions on the side walls and includes a hexagonal pin fin and half channel on both sides to reflect the structural characteristics completely. The governing equations are also solved using finite volume method.

Findings

The results reveal that θ = 60 and RL = 1 yield the optimum thermal performance and heat sink performance is significantly influenced by the vertex angle and RL. The modified hexagon geometry improves fluid flow behavior by reducing the volume of the recirculation region behind the pin fin, preventing its effects on the downstream pin fins and restricting the thermal boundary layer development on its straight side. At Re = 1,000, the modified geometry enhances the average Nusselt number by 24.46% and the thermal performance factor by 23.89%, demonstrating the potential of modified hexagonal pin fins to enhance micropin fin heat sink performance.

Originality/value

Prior studies suggest using the pin fins with a regular hexagonal cross-section to obtain better thermal performance. However, this comes with a higher pressure drop penalty. The modification of the hexagonal pin fin geometry has been investigated in this numerical study to enhance both the thermal and hydraulic performance of the micropin fin heat sink. Because little attention has been paid to the modification of the regular hexagonal pin fins, as a geometry inspired by natural honeycomb structures, its design optimization is relatively scarce, and a gap was felt in this field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 June 2023

Naseer H. Hamza, Maathe A. Theeb and Mikhail A. Sheremet

The purpose of this research is to scrutinize numerically the effect of internally equipped nonuniformly heated plate within wavy cavity on heat transfer enhancement in the case…

Abstract

Purpose

The purpose of this research is to scrutinize numerically the effect of internally equipped nonuniformly heated plate within wavy cavity on heat transfer enhancement in the case of hybrid nanofluid flow.

Design/methodology/approach

The two-dimensional, steady, laminar, Newtonian and incompressible thermo-fluid flow phenomenon has been investigated numerically using Galerkin method. The considered parameters including number of waves (3–7), nondimensional length of heated plate (0.4–0.8), plate inclination angle (0º–90º), Rayleigh number (103–106) and concentration of nanoparticles (0.0–2.0) have been investigated in combination with involving hybrid nanofluid as a working fluid to augment thermal properties effectively. Two vertical wavy boundaries have low temperature whilst the other horizontal surfaces are adiabatic.

Findings

The Rayleigh number has a moderate impact on the values of Nusselt number, and skin friction parameter varied from 103 to 105 while it strongly affects them for Ra = 106, where Nu is roughly doubled (approximately 200%) in comparison with its value at Ra = 105 for all cases. Stream function is changed by the orientation of heated plate and Ra values, where its maximum value was 12.9 in horizontal position and 13.6 at vertical one. Results indicate a separation from the wavy walls at low Ra which tends to keep stagnation region at the deep parts of corrugated walls contrary the case at high Ra. The behavior of the isotherm contours tends to be distributed more evenly at lower values of Ra and angle of inclination lower than 45º. The resulting properties from mixing two materials for hybrid nanofluid into one base fluid show a good compromise between thermal capacity and heat conductivity, which is improved by 16% that leads to enhanced convective energy transport in the wavy chamber.

Originality/value

The originality of this work is the considered physical phenomenon where an influence of internal nonuniformly heated plate has been studied for the irregular geometry filled with a hybrid nanofluid. Such analysis allows defining the possible heat transfer enhancement for such an irregular cavity and inner heated plate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…

Abstract

Purpose

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.

Design/methodology/approach

During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.

Findings

The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.

Originality/value

The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 177