Search results

1 – 10 of 71
Article
Publication date: 29 April 2019

Guozhi Li, Fuhai Zhang, Yili Fu and Shuguo Wang

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Abstract

Purpose

The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions.

Design/methodology/approach

The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe.

Findings

Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC.

Originality/value

The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2018

Hua Liu, Weidong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position…

Abstract

Purpose

This paper aims to propose a calibration model for kinematic parameters identification of serial robot to improve its positioning accuracy, which only requires position measurement of the end-effector.

Design/methodology/approach

The proposed model is established based on local frame representation of the product of exponentials (local POE) formula, which integrates all kinematic errors into the twist coordinates errors; then they are identified with the tool frame’ position deviations simultaneously by an iterative least squares algorithm.

Findings

To verify the effectiveness of the proposed method, extensive simulations and calibration experiments have been conducted on a 4DOF SCARA robot and a 5DOF drilling machine, respectively. The results indicate that the proposed model outperforms the existing model in convergence, accuracy, robustness and efficiency; fewer measurements are needed to gain an acceptable identification result.

Practical implications

This calibration method has been applied to a variable-radius circumferential drilling machine. The machine’s positioning accuracy can be significantly improved from 11.153 initially to 0.301 mm, which is well in the tolerance (±0.5 mm) for fastener hole drilling in aircraft assembly.

Originality/value

An accurate and efficient kinematic calibration model has been proposed, which satisfies the completeness, continuity and minimality requirements. Due to generality, this model can be widely used for serial robot kinematic calibration with any combination of revolute and prismatic joints.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 November 2018

Chen Shen, Youping Chen, Bing Chen and Yu Qiao

This paper aims to propose a novel robot kinematic calibration method based on the common perpendicular line (CPL) model to improve the absolute accuracy of industrial robots.

Abstract

Purpose

This paper aims to propose a novel robot kinematic calibration method based on the common perpendicular line (CPL) model to improve the absolute accuracy of industrial robots.

Design/methodology/approach

The deviation between the nominal and actual twists is considered the CPL transformation, which includes the rotation about the CPL and the translation along the CPL. By using the invariance of the reciprocal product of the two spatial lines, the previous deviation was analyzed in the neighbor space of the base frame origin. In this space, the line vector of the CPL contained only four independent parameters: two orientation elements and two moment elements. Thus, the CPL model has four independent parameters for the revolute joint and two parameters for the prismatic joint.

Findings

By simulations and experiment conducted on a SCARA robot and a 6-DOF PUMA robot, the effectiveness of the novel method for calibration of industrial robot is validated.

Originality/value

The CPL model avoided the normalization and orthogonalization in the iterative identification procedure. Therefore, identifying the CPL model was not only simpler but also more accurate than that of the traditional model. In addition, the results of the CPL transformation strictly conformed to the constraints of the twist.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2014

Wei Wang, Gang Wang and Chao Yun

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate…

Abstract

Purpose

Calibrating kinematic parameters is one of the efficient ways to improve the robot's positioning accuracy. A method based on the product-of-exponential (POE) formula to calibrate the kinematic parameters of serial industrial robots is proposed. The paper aims to discuss these issues.

Design/methodology/approach

The forward kinematics is established, and the general positioning error model is deduced in an explicit expression. A simplified model of robot's positioning error is established as both the error of reference configuration and the error of rigid displacement of the base coordinating system with respect to the measuring coordinating system are equivalently transferred to the zero position errors of the robot's joints. A practical calibration model is forwarded only requiring 3D measuring based on least-squares algorithm. The calibration system and strategy for calibrating kinematic parameters are designed.

Findings

By the two geometrical constrains between the twist coordinates, each joint twist only has four independent coordinates. Due to the equivalent error model, the zero position error of each joint can cover the error of reference configuration and rigid displacement of the robot base coordinating system with respect to the measuring coordinating system. The appropriate number of independent kinematic parameters of each joint to be calibrated is five.

Originality/value

It is proved by a group of calibration experiments that the calibration method is well conditioned and can be used to promote the level of absolute error of end effector of industrial robot to 2.2 mm.

Details

Industrial Robot: An International Journal, vol. 41 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 April 2021

Wenmin Chu, Xiang Huang and Shuanggao Li

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly…

Abstract

Purpose

With the improvement of modern aircraft requirements for safety, long life and economy, higher quality aircraft assembly is needed. However, due to the manufacturing and assembly errors of the posture adjustment mechanism (PAM) used in the digital assembly of aircraft large component (ALC), the posture alignment accuracy of ALC is difficult to be guaranteed, and the posture adjustment stress is easy to be generated. Aiming at these problems, this paper aims to propose a calibration method of redundant actuated parallel mechanism (RAPM) for posture adjustment.

Design/methodology/approach

First, the kinematics model of the PAM is established, and the influence of the coupling relationship between the axes of the numerical control locators (NCL) is analyzed. Second, the calibration method based on force closed-loop feedback is used to calibrate each branch chain (BC) of the PAM, and the solution of kinematic parameters is optimized by Random Sample Consensus (RANSAC). Third, the uncertainty of kinematic calibration is analyzed by Monte Carlo method. Finally, a simulated posture adjustment system was built to calibrate the kinematics parameters of PAM, and the posture adjustment experiment was carried out according to the calibration results.

Findings

The experiment results show that the proposed calibration method can significantly improve the posture adjustment accuracy and greatly reduce the posture adjustment stress.

Originality/value

In this paper, a calibration method based on force feedback is proposed to avoid the deformation of NCL and bracket caused by redundant driving during the calibration process, and RANSAC method is used to reduce the influence of large random error on the calibration accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2014

Wang Zhenhua, Xu Hui, Chen Guodong, Sun Rongchuan and Lining Sun

The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while…

Abstract

Purpose

The purpose of this paper is to present a distance accuracy-based industrial robot kinematic calibration model. Nowadays, the repeatability of the industrial robot is high, while the absolute positioning accuracy and distance accuracy are low. Many factors affect the absolute positioning accuracy and distance accuracy, and the calibration method of the industrial robot is an important factor. When the traditional calibration methods are applied on the industrial robot, the accumulative error will be involved according to the transformation between the measurement coordinate and the robot base coordinate.

Design/methodology/approach

In this manuscript, a distance accuracy-based industrial robot kinematic calibration model is proposed. First, a simplified kinematic model of the robot by using the modified Denavit–Hartenberg (MDH) method is introduced, then the proposed distance error-based calibration model is presented; the experiment is set up in the next section.

Findings

The experimental results show that the proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.

Originality/value

The proposed calibration model based on MDH and distance error can improve the distance accuracy and absolute position accuracy dramatically.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 September 2023

Ling Wang, Xiaoliang Wu, Zeng Kang, Yanfeng Gao, Xiai Chen and Binrui Wang

In traditional calibration methods of kinematics parameters of industrial robots, dozens of model parameters are identified together based on an optimization procedure. Due to…

Abstract

Purpose

In traditional calibration methods of kinematics parameters of industrial robots, dozens of model parameters are identified together based on an optimization procedure. Due to different contributions of model parameter errors to the tool center point positioning error of industrial robots, obtaining good results for all model parameters is very difficult. Therefore, the purpose of this paper is to propose a sequential calibration method specifically for transmission ratio parameters, which includes reduction ratios and coupling ratios of industrial robot joints.

Design/methodology/approach

The ABB IRB 1410 industrial robot is considered as an example in this study. The transmission ratios for each joint of the robot are identified using the spatial circle fitting method based on spatial vectors, which fit the center and radius of joint rotation with the least squares optimization algorithm. In addition, a method based on the Rodrigues’ formula is designed and presented for identifying the actual coupling ratio of the robot. Subsequently, an experiment is carried out to verify the proposed sequential calibration method of transmission ratios.

Findings

In this experiment, the actual positions of the linkages before and after joint rotations are measured by a laser tracker. Accurate results of the reduction ratios and the coupling ratios are calculated, and the results are verified experimentally. The results show that by calibrating the reduction ratios and coupling ratios of the ABB robot, the rotation angle errors of the robot joints can be reduced.

Originality/value

The authors propose a sequential calibration method for transmission ratio parameters, including reduction ratios and coupling ratios of industrial robot joints. An experiment is carried out to verify this proposed sequential calibration method. This study may be beneficial for calibrating the kinematic parameters of industrial robots and improving their positioning accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2012

Haixia Wang, Shuhan Shen and Xiao Lu

The purpose of this paper is to propose a screw axis identification (SAI) method based on the product of exponentials (POE) model, which is concerned with calibrating a serial…

Abstract

Purpose

The purpose of this paper is to propose a screw axis identification (SAI) method based on the product of exponentials (POE) model, which is concerned with calibrating a serial robot with m joints equipped with a stereo‐camera vision system.

Design/methodology/approach

Different from conventional approaches, like the circle point analysis (CPA) or the system theoretic method which must collect a great deal of data, the identification of the joint parameters for the proposed method only needs to measure m+1 times for n (n≥3) target points mounted on the manipulator end‐effector.

Findings

In this approach, the joint parameter, called a screw or twist, together with the actual value of joint angle can be obtained by linearly solving a closed‐form expression. Further, this method avoids calibrating the hand‐eye relationship and the exterior parameter of the robot.

Originality/value

Finally, the stability and accuracy of the SAI method are evaluated by simulation experiments, and it is also verified well in practical experiments.

Details

Industrial Robot: An International Journal, vol. 39 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 August 2014

Zhangjun Jin, Cijun Yu, Jiangxiong Li and Yinglin Ke

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is…

Abstract

Purpose

The purpose of this paper is to propose a robot-assisted assembly system (RAAS) for the installation of a variety of small components in the aircraft assembly system. The RAAS is designed to improve the assembly accuracy and increase the productive efficiency.

Design/methodology/approach

The RAAS is a closed-loop feedback system, which is integrated with a laser tracking system and an industrial robot system. The laser tracking system is used to evaluate the deviations of the position and orientation of the small component and the industrial robot system is used to locate and re-align the small component according to the deviations.

Findings

The RAAS has exhibited considerable accuracy improvement and acceptable assembly efficiency in aircraft assembly project. With the RAAS, the maximum position deviation of the component is reduced to 0.069 mm and the maximum orientation deviation is reduced to 0.013°.

Social implications

The RAAS is applied successfully in one of the aircraft final assembly projects in southwest China.

Originality/value

By integrating the laser tracking system, the RAAS is constructed as a closed-loop feedback system of both the position and orientation of the component. With the RAAS, the installation a variety of small components can be dealt with by a single industrial robot.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2018

Li Pan, Guanjun Bao, Fang Xu and Libin Zhang

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external…

Abstract

Purpose

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external disturbances. The controller is used to achieve both stringent trajectory tracking, accurate parameter estimations and robustness against external disturbances.

Design/methodology/approach

The controller is designed based on the combination of sliding mode control, adaptive and robust controls and hence has good adaptation and robustness abilities to parametric variations and uncertainties. The unknown parameter estimates are updated online based on a discontinuous projection adaptation law. The robotic dynamics is first formulated in both joint spaces and workspace of the robot’s end-effector. Then, the design procedure of the adaptive robust sliding mode tracking controller and the parameter update law is detailed.

Findings

Comparative tests are also conducted to verify the effectiveness of the proposed controller, which show that the proposed controller achieves significantly better dynamic trajectory tracking performances as compared with conventional proportional derivative controller and sliding mode controller under the same conditions.

Originality/value

This is a new innovation for industrial assembly robot to improve assembly automation.

1 – 10 of 71