Search results

1 – 10 of 15
Article
Publication date: 12 July 2011

M.A. Latif, J.C. Chedjou and K. Kyamakya

An image contrast enhancement is one of the most important low‐level image pre‐processing tasks required by the vision‐based advanced driver assistance systems (ADAS). This paper…

Abstract

Purpose

An image contrast enhancement is one of the most important low‐level image pre‐processing tasks required by the vision‐based advanced driver assistance systems (ADAS). This paper seeks to address this important issue keeping the real time constraints in focus, which is especially vital for the ADAS.

Design/methodology/approach

The approach is based on a paradigm of nonlinear‐coupled oscillators in image processing. Each layer of the colored images is treated as an independent grayscale image and is processed separately by the paradigm. The pixels with the lowest and the highest gray levels are chosen and their difference is enhanced to span all the gray levels in an image over the entire gray level range, i.e. [0 1]. This operation enhances the contrast in each layer and the enhanced layers are finally combined to produce a color image of a much improved quality.

Findings

The approach performs robust contrast enhancement as compared to other approaches available in the relevant literature. Generally, other approaches do need a new setting of parameters for every new image to perform its task, i.e. contrast enhancement. These approaches are not useful for real‐time applications such as ADAS. Whereas, the proposed approach presented in this paper performs contrast enhancement for different images under the same setting of parameters, hence giving rise to the robustness in the system. The unique setting of parameters is derived through a bifurcation analysis explained in the paper.

Originality/value

The proposed approach is novel in different aspects. First, the proposed paradigm comprises of coupled differential equations, and therefore, offers a continuous model as opposed to other approaches in the relevant literature. This continuity in the model is an inherent feature of the proposed approach, which could be useful in realizing real‐time image processing with an analog implemented circuit of the approach. Furthermore, a novel framework combining coupled oscillatory paradigm and cellular neural network is also possible to achieve ultra‐fast solution in image contrast enhancement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

J.C. Chedjou and K. Kyamakya

This paper seeks to develop, propose and validate, through a series of presentable examples, a comprehensive high‐precision and ultra‐fast computing concept for solving stiff…

Abstract

Purpose

This paper seeks to develop, propose and validate, through a series of presentable examples, a comprehensive high‐precision and ultra‐fast computing concept for solving stiff ordinary differential equations (ODEs) and partial differential equations (PDEs) with cellular neural networks (CNN).

Design/methodology/approach

The core of the concept developed in this paper is a straight‐forward scheme that we call “nonlinear adaptive optimization (NAOP)”, which is used for a precise template calculation for solving any (stiff) nonlinear ODEs through CNN processors.

Findings

One of the key contributions of this work (this is a real breakthrough) is to demonstrate the possibility of mapping/transforming different types of nonlinearities displayed by various classical and well‐known oscillators (e.g. van der Pol‐, Rayleigh‐, Duffing‐, Rössler‐, Lorenz‐, and Jerk‐ oscillators, just to name a few) unto first‐order CNN elementary cells, and thereby enabling the easy derivation of corresponding CNN‐templates. Furthermore, in case of PDEs solving, the same concept also allows a mapping unto first‐order CNN cells while considering one or even more nonlinear terms of the Taylor's series expansion generally used in the transformation of a PDEs in a set of coupled nonlinear ODEs. Therefore, the concept of this paper does significantly contribute to the consolidation of CNN as a universal and ultra‐fast solver of stiff differential equations (both ODEs and PDEs). This clearly enables a CNN‐based, real‐time, ultra‐precise, and low‐cost Computational Engineering. As proof of concept a well‐known prototype of stiff equations (van der Pol) has been considered; the corresponding precise CNN‐templates are derived to obtain precise solutions of this equation.

Originality/value

This paper contributes to the enrichment of the literature as the relevant state‐of‐the‐art does not provide a systematic and robust method to solve nonlinear ODEs and/or nonlinear PDEs using the CNN‐paradigm. Further, the “NAOP” concept developed in this paper has been proven to perform accurate and robust calculations. This concept is not based on trial‐and‐error processes as it is the case for various classes of optimization methods/tools (e.g. genetic algorithm, particle swarm, neural networks, etc.). The “NAOP” concept developed in this frame does significantly contribute to the consolidation of CNN as a universal and ultra‐fast solver of nonlinear differential equations (both ODEs and PDEs). An implantation of the concept developed is possible even on embedded digital platforms (e.g. field‐programmable gate array (FPGA), digital signal processing (DSP), graphics processing unit (GPU), etc.); this opens a broad range of applications. On‐going works (as outlook) are using NAOP for deriving precise templates for a selected set of practically interesting PDE models such as Navier Stokes, Schrödinger, Maxwell, etc.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 April 2023

Sadia Samar Ali, Shahbaz Khan, Nosheen Fatma, Cenap Ozel and Aftab Hussain

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this…

1407

Abstract

Purpose

Organisations and industries are often looking for technologies that can accomplish multiple tasks, providing economic benefits and an edge over their competitors. In this context, drones have the potential to change many industries by making operations more efficient, safer and more economic. Therefore, this study investigates the use of drones as the next step in smart/digital warehouse management to determine their socio-economic benefits.

Design/methodology/approach

The study identifies various enablers impacting drone applications to improve inventory management, intra-logistics, inspections and surveillance in smart warehouses through a literature review, a test of concordance and the fuzzy Delphi method. Further, the graph theory matrix approach (GTMA) method was applied to ranking the enablers of drone application in smart/digital warehouses. In the subsequent phase, researchers investigated the relation between the drone application's performance and the enablers of drone adoption using logistic regression analysis under the TOE framework.

Findings

This study identifies inventory man agement, intra-logistics, inspections and surveillance are three major applications of drones in the smart warehousing. Further, nine enablers are identified for the adoption of drone in warehouse management. The findings suggest that operational effectiveness, compatibility of drone integration and quality/value offered are the most impactful enablers of drone adoption in warehouses. The logistic regression findings are useful for warehouse managers who are planning to adopt drones in a warehouse for efficient operations.

Research limitations/implications

This study identifies the enablers of drone adoption in the smart and digital warehouse through the literature review and fuzzy Delphi. Therefore, some enablers may be overlooked during the identification process. In addition to this, the analysis is based on the opinion of the expert which might be influenced by their field of expertise.

Practical implications

By considering technology-organisation-environment (TOE) framework warehousing companies identify the opportunities and challenges associated with using drones in a smart warehouse and develop strategies to integrate drones into their operations effectively.

Originality/value

This study proposes a TOE-based framework for the adoption of drones in warehouse management to improve the three prominent warehouse functions inventory management, intra-logistics, inspections and surveillance using the mixed-method.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 16 July 2024

Chandresh Kumbhani and Ravi Kant

Strategic integration of enablers and the realization of drone delivery benefits emerge as essential strategies for business organizations to enhance operational efficiency and…

Abstract

Purpose

Strategic integration of enablers and the realization of drone delivery benefits emerge as essential strategies for business organizations to enhance operational efficiency and stay competitive in last-mile logistics. This paper aims to explore the benefits of drone-based last-mile delivery in the Indian logistic sector by providing a framework for ranking drone delivery benefits (DDBs) due to the adoption of its enablers.

Design/methodology/approach

This study proposes a novel hybrid framework applied in the Indian logistic sector by integrating a sentence boundary extraction algorithm for extracting benefits from literature, a spherical fuzzy analytical hierarchy process (SF-AHP) for evaluating primary enablers, unsupervised fuzzy C-means clustering (FCM) for clustering benefits and a spherical combined compromised solution (SF-CoCoSo) for ranking benefits with respect to primary enablers.

Findings

The results reveal that technological and infrastructure enablers (TIE), government and legislation enablers (GLE) and operational and service quality enablers (OSE) are the most significant enablers for drone implementation in logistics. Top-ranked benefits increase the efficiency of last-mile delivery (DDB10), foster supply chain management and logistic sustainability (DDB16) and increase delivery access to rural area and vulnerable people (DDB17).

Practical implications

This research assists scholars, entrepreneurs and policymakers in the sustainable deployment of drone delivery in the logistics sector. This study facilitates the use of drones in delivery services and provides a foundation for all stakeholders in logistics.

Originality/value

The assessments involve considering judgment from a highly knowledgeable and experienced group in India, characterized by a large volume of inputs and a high level of expertise.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 11 May 2023

Mehrdad Moradnezhad and Hossein Miar-Naimi

The purpose of this paper is to find a closed relation for the phase noise of LC oscillators.

Abstract

Purpose

The purpose of this paper is to find a closed relation for the phase noise of LC oscillators.

Design/methodology/approach

The governing equation of oscillators is generally a stochastic nonlinear differential equation. In this paper, a closed relation for the phase noise of LC oscillators was obtained by approximating the IV characteristic of the oscillator with third-degree polynomials and analyzing its differential equation.

Findings

This relation expresses phase noise directly in terms of circuit parameters, including the sizes of the transistors and the bias. Next, for evaluation, the phase noise of the cross-coupled oscillator without tail current was calculated with the proposed model. In this approach, the obtained equations are expressed independently of technology by combining the obtained phase noise relation and gm/ID method.

Originality/value

A technology-independent method using the gm/ID method and the closed relationship is provided to calculate phase noise.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 June 2020

Zhangyuan He

Freight network planning and the application of distribution innovations are popular fields of research on sustainable urban logistics. However, considerable research on freight…

2285

Abstract

Purpose

Freight network planning and the application of distribution innovations are popular fields of research on sustainable urban logistics. However, considerable research on freight network design lacks a comprehensive consideration of the application of distribution innovations. This observation implies that sustainable urban freight research appears highly fragmented in topics of network design and distribution innovations. From the perspective of long-term planning, this situation possibly serves as a barrier to further promotion of sustainability. The objective of this paper is to analyze existing research gaps of literature to further promote the sustainability of urban logistics systems from a future perspective.

Design/methodology/approach

This paper employs a systematic literature review (SLR) method, which covers 164 papers and research works published in 2013–2018. The article corpus involved the innovative schemes of freight network design and the emerging delivery concepts in cities. Based on an analysis of articles' relevance, the most significant research contributions on both city logistics network design and exploitation of distribution innovations are detected.

Findings

This paper has found four research gaps in aspects of network design and distribution innovations. To respond to these gaps, we propose the research framework of sustainable and flexible future urban freight planning (SFFUFP) based on trends of city development, while discussing further research direction on urban freight planning.

Originality/value

The authors have found four research gaps in aspects of both urban freight network design and distribution innovations in which scholars could be encouraged to contribute. The research framework of SFFUFP can further promote sustainable urban logistics from a view of future management.

Details

International Journal of Physical Distribution & Logistics Management, vol. 50 no. 6
Type: Research Article
ISSN: 0960-0035

Keywords

Open Access
Article
Publication date: 28 June 2023

Siti Norida Wahab, Nusrat Ahmed and Mohamed Syazwan Ab Talib

The Indian pharmaceutical industry has contributed significantly to global healthcare by securing superior-quality, inexpensive and reachable medicines worldwide. However, supply…

8643

Abstract

Purpose

The Indian pharmaceutical industry has contributed significantly to global healthcare by securing superior-quality, inexpensive and reachable medicines worldwide. However, supply chain management (SCM) has been challenging due to constantly shifting requirements for short lifecycles of products, the convergence of industry and changeable realities on the ground. This study aims to identify, assess and prioritize the strengths, weaknesses and opportunities of the pharmaceutical SCM environment in India.

Design/methodology/approach

The paper employs a Strength, Weakness, Opportunity, Threat (SWOT) analysis and recognizes strategies to utilize the advantages of the strengths and opportunities, rectify weaknesses and resolve threats.

Findings

A variety of strategies that could have a positive effect on the Indian pharmaceutical business are presented. Findings and suggested strategies can significantly advance knowledge, enhance understanding and contribute to the growth of a successful SCM for the Indian pharmaceutical sector.

Originality/value

This paper would act as a roadmap to greater comprehension of the market leaders and market leaders' operating climate. The findings from this study will offer academic scholars and business practitioners deeper insights into the environment of SCM.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 2 November 2017

Yang Gu, Qian Song, Ming Ma, Yanghuan Li and Zhimin Zhou

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior…

Abstract

Purpose

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior connections and unanimity, making it difficult to incorporate multiple sources of aiding information. This paper aims to propose a unanimous anchor-based trajectory calibration framework, which is expandable to encompass different types of anchor information.

Design/methodology/approach

The concept of anchors is introduced to represent different types of aiding information, which are, in essence, different constraint conditions on inertia-derived raw trajectories. The foundation of the framework is a particle filter which is implemented based on various particle weight updating strategies using diverse types of anchor information. Herein, three representative anchors are chosen to elaborate and validate the proposed framework, namely, ultra-wide-band (UWB) ranging anchors, iBeacons and the building structure-based virtual anchors.

Findings

In the simulations, with the particle reweighting strategies of the proposed framework, the positioning errors can be compensated. In the experimental test in an office building in which three anchors, including one UWB anchor, one iBeacon and one building structure-based virtual anchor are deployed; the final positioning error is decreased from 1.9 to 1.2 m; and the heading error is reduced from about 21° to 7°, respectively.

Originality/value

Herein, an anchor-based unanimous trajectory calibration framework for inertial pedestrian positioning is proposed. This framework is applicable to the schemes with different configurations of the anchors and can be expanded to adopt as much anchor information as possible.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 July 2020

Min Liu, Muzhou Hou, Juan Wang and Yangjin Cheng

This paper aims to develop a novel algorithm and apply it to solve two-dimensional linear partial differential equations (PDEs). The proposed method is based on Chebyshev neural…

Abstract

Purpose

This paper aims to develop a novel algorithm and apply it to solve two-dimensional linear partial differential equations (PDEs). The proposed method is based on Chebyshev neural network and extreme learning machine (ELM) called Chebyshev extreme learning machine (Ch-ELM) method.

Design/methodology/approach

The network used in the proposed method is a single hidden layer feedforward neural network. The Kronecker product of two Chebyshev polynomials is used as basis function. The weights from the input layer to the hidden layer are fixed value 1. The weights from the hidden layer to the output layer can be obtained by using ELM algorithm to solve the linear equations established by PDEs and its definite conditions.

Findings

To verify the effectiveness of the proposed method, two-dimensional linear PDEs are selected and its numerical solutions are obtained by using the proposed method. The effectiveness of the proposed method is illustrated by comparing with the analytical solutions, and its superiority is illustrated by comparing with other existing algorithms.

Originality/value

Ch-ELM algorithm for solving two-dimensional linear PDEs is proposed. The algorithm has fast execution speed and high numerical accuracy.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 July 2020

Sengathir Janakiraman

An Improved Rank Criterion-based NLOS node Detection Mechanism (IRC-NLOS-DM) is proposed based on the benefits of a reputation model for effective localization of NLOS nodes…

Abstract

Purpose

An Improved Rank Criterion-based NLOS node Detection Mechanism (IRC-NLOS-DM) is proposed based on the benefits of a reputation model for effective localization of NLOS nodes during the dynamic exchange of emergency messages in critical situations.

Design/methodology/approach

This proposed IRC-NLOS-DM scheme derives the benefits of a reputation model that influentially localizes the NLOS nodes under dynamic exchange of emergency messages. This proposed IRC-NLOS-DM scheme is an attempt to resolve the issues with the routing protocols that aids in warning message delivery of vehicles that are facing NLOS situations with the influence of channel contention and broadcast storm. It is developed for increasing the warning packet delivery rate with minimized overhead, delay and channel utilization.

Findings

The simulation results of the proposed IRC-NLOS-DM scheme confirmed the excellence of the proposed IRC-NLOS-DM over the existing works investigated based on the channel utilization rate, neighborhood prediction rate and emergency message forwarding rate.

Practical implications

It is proposed for reliable warning message delivery in Vehicular Ad hoc Networks (VANETs) which is referred as the specialized category of mobile ad hoc network application that influences Intelligent Transportation Systems (ITS) and wireless communications. It is proposed for implementing vehicle safety applications for constructing a least cluttered and a secure environment on the road.

Originality/value

It is contributed as a significant mechanism for facilitating reliable dissemination of emergency messages between the vehicular nodes, which is essential in the critical environment to facilitate a risk-free environment. It also aids in creating a reliable environment for accurate localization of Non-Line of Sight (NLOS) nodes that intentionally introduces the issues of broadcasting storm and channel congestion during the process of emergency message exchanges.

Details

International Journal of Intelligent Unmanned Systems, vol. 9 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 15