Search results

1 – 10 of 251
Open Access
Article
Publication date: 14 July 2021

Luca Giorleo and Michele Bonaventi

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

1647

Abstract

Purpose

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Design/methodology/approach

The research was divided into two activities: simple; and complex-part production capability. In the simple-part step, the performance of gypsum powder and the minimum mold thickness that would withstand the casting process. In the complex-part step, the authors first investigated the powder removability as a function of geometry complexity and then binder jetting performance was evaluated for the case of lattice-structure fabrication.

Findings

All the geometries tested withstand the casting process demonstrating the benefits in terms of complexity part design; however, the process suffers of all the typical defect of casting as misrun, porosity and cold shut.

Originality/value

The results found in this research improve the benefits related to additive manufacturing application in industrial environment and in particular to the binder jetting technology and the rapid casting approach.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 October 2022

Diqian Ren, Jun-Ki Choi and Kellie Schneider

Because of the significant differences in the features and requirements of specific products and the capabilities of various additive manufacturing (AM) solutions, selecting the…

1528

Abstract

Purpose

Because of the significant differences in the features and requirements of specific products and the capabilities of various additive manufacturing (AM) solutions, selecting the most appropriate AM technology can be challenging. This study aims to propose a method to solve the complex process selection in 3D printing applications, especially by creating a new multicriteria decision-making tool that takes the direct certainty of each comparison to reflect the decision-maker’s desire effectively.

Design/methodology/approach

The methodology proposed includes five steps: defining the AM technology selection decision criteria and constraints, extracting available AM parameters from the database, evaluating the selected AM technology parameters based on the proposed decision-making methodology, improving the accuracy of the decision by adopting newly proposed weighting scheme and selecting optimal AM technologies by integrating information gathered from the whole decision-making process.

Findings

To demonstrate the feasibility and reliability of the proposed methodology, this case study describes a detailed industrial application in rapid investment casting that applies the weightings to a tailored AM technologies and materials database to determine the most suitable AM process. The results showed that the proposed methodology could solve complicated AM process selection problems at both the design and manufacturing stages.

Originality/value

This research proposes a unique multicriteria decision-making solution, which employs an exclusive weightings calculation algorithm that converts the decision-maker's subjective priority of the involved criteria into comparable values. The proposed framework can reduce decision-maker's comparison duty and potentially reduce errors in the pairwise comparisons used in other decision-making methodologies.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 18 May 2021

Praveen Kulkarni, Arun Kumar, Ganesh Chate and Padma Dandannavar

This study aims to examine factors that determine the adoption of additive manufacturing by small- and medium-sized industries. It provides insights with regard to benefits…

2662

Abstract

Purpose

This study aims to examine factors that determine the adoption of additive manufacturing by small- and medium-sized industries. It provides insights with regard to benefits, challenges and business factors that influence small- and medium-sized industries when adopting this technology. The study also aims to expand the domain of additive manufacturing by including a broader range of challenges and benefits of additive manufacturing in literature.

Design/methodology/approach

Using data collected from 175 small- and medium-sized industries, the study has examined through Mann–Whitney test to understand the difference between owners and design engineers on additive manufacturing technology adoption in small- and medium-sized companies.

Findings

This study suggests contribution to academic discussion by providing associated factors that have significant impact on the adoption of additive manufacturing technology. Related advantages of additive manufacturing are reduction in inventory cost, lowering the wastage in production and customization of products. The study also indicates that factors such as cost of machinery, higher level of cost in integrating metal components have a negative impact on the adoption of this technology in small- and medium-sized industries.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further in the field of challenges and growth in other areas of application of additive manufacturing, for instance, medical sciences, fabric and aerospace.

Practical implications

The study provides important implications that are of interest for both research and practitioners, related to technology management in small- and medium-sized industries, e.g. foundry and machining industries.

Social implications

This work/study fulfills an identified need of the small- and medium-sized companies in adopting new technologies and contribute to their growth by understanding the need to accept and implement technology.

Originality/value

This paper fulfills an identified need to study how small- and medium-scale companies accept new technologies and factors associated with implementation in the manufacturing process of the organization.

Details

Innovation & Management Review, vol. 18 no. 4
Type: Research Article
ISSN: 2515-8961

Keywords

Open Access
Article
Publication date: 9 November 2018

Choo-Hui Park and Hankyu Chu

The Government of Korea institutionalized the World Korean Business Convention (WKBC) and the World Korean Business Network (WKBN) to promote Korean diaspora entrepreneurs’…

1536

Abstract

Purpose

The Government of Korea institutionalized the World Korean Business Convention (WKBC) and the World Korean Business Network (WKBN) to promote Korean diaspora entrepreneurs’ investment in the homeland. Few studies have examined the effectiveness of the WKBC and WKBN and the critical variables affecting them. This paper aims to fill this gap by exploring important variables affecting Korean diaspora entrepreneurs’ investment in the homeland. It also seeks to examine the relationships among these variables to inquire upon a set of critical questions pertaining to Korean diaspora entrepreneurs’ investment in the homeland including the effectiveness of the WKBC and WKBN.

Design/methodology/approach

To achieve the above purpose, critical variables influencing Korean diaspora entrepreneurs’ investment in the homeland were identified and four hypotheses that include the inquiries pertaining to the effectiveness of the WKBC and WKBN were developed in terms of those variables. The hypotheses were empirically tested using the survey data gathered from the participants of the annual WKBC.

Findings

The current research found that Korean diaspora entrepreneurs’ evaluation of the investment climate in the homeland was not favorable. The WKBC was positively evaluated by Korean diaspora entrepreneurs willing to make investment, There is discrepancy between expectations of the WKBN’s target group (i.e. Korean diaspora entrepreneurs willing to make investment) and its performance for the group, and there is a difference between ascending and descending Korean diaspora entrepreneurs in assessment of investment value of the homeland.

Originality/value

A majority of studies on diaspora entrepreneurship and development have so far cast light on ascending diaspora entrepreneurs while neglecting descending diaspora entrepreneurs. In this regard, the most interesting finding of the current study to both researchers and policymakers may be the fact that descending Korean diaspora entrepreneurs assess the investment value of the homeland differently from ascending Korea diaspora entrepreneurs. The finding calls for further research on causes of the difference, and different natures of descending diaspora entrepreneurs compared to those of ascending diaspora entrepreneurs. Such research will enable policymakers to formulate and implement effective strategic diaspora policies that take the differences into consideration.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 12 no. 3
Type: Research Article
ISSN: 2398-7812

Keywords

Open Access
Article
Publication date: 3 August 2021

Rose Clancy, Dominic O'Sullivan and Ken Bruton

Data-driven quality management systems, brought about by the implementation of digitisation and digital technologies, is an integral part of improving supply chain management…

6609

Abstract

Purpose

Data-driven quality management systems, brought about by the implementation of digitisation and digital technologies, is an integral part of improving supply chain management performance. The purpose of this study is to determine a methodology to aid the implementation of digital technologies and digitisation of the supply chain to enable data-driven quality management and the reduction of waste from manufacturing processes.

Design/methodology/approach

Methodologies from both the quality management and data science disciplines were implemented together to test their effectiveness in digitalising a manufacturing process to improve supply chain management performance. The hybrid digitisation approach to process improvement (HyDAPI) methodology was developed using findings from the industrial use case.

Findings

Upon assessment of the existing methodologies, Six Sigma and CRISP-DM were found to be the most suitable process improvement and data mining methodologies, respectively. The case study revealed gaps in the implementation of both the Six Sigma and CRISP-DM methodologies in relation to digitisation of the manufacturing process.

Practical implications

Valuable practical learnings borne out of the implementation of these methodologies were used to develop the HyDAPI methodology. This methodology offers a pragmatic step by step approach for industrial practitioners to digitally transform their traditional manufacturing processes to enable data-driven quality management and improved supply chain management performance.

Originality/value

This study proposes the HyDAPI methodology that utilises key elements of the Six Sigma DMAIC and the CRISP-DM methodologies along with additions proposed by the author, to aid with the digitisation of manufacturing processes leading to data-driven quality management of operations within the supply chain.

Details

The TQM Journal, vol. 35 no. 1
Type: Research Article
ISSN: 1754-2731

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 10 October 2018

Chander Prakash, Sunpreet Singh, Ilenia Farina, Fernando Fraternali and Luciano Feo

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently…

1136

Abstract

Purpose

Porous implant surface is shown to facilitate bone in-growth and cell attachment, improving overall osteointegration, while providing adequate mechanical integrity. Recently, biodegradable material possessing such superior properties has been the focus with an aim of revolutionizing implant’s design, material and performance. This paper aims to present a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by mechanical alloying and spark plasma sintering (MA-SPS) technique.

Design/methodology/approach

This paper presents a comprehensive investigation into the design and development of low elastic modulus porous biodegradable Mg-3Si-5HA composite by MA-SPS technique. As the key alloying elements, HA powders with an appropriate proportion weight 5 and 10 are mixed with the base elemental magnesium (Mg) particles to form the composites of potentially variable porosity and mechanical property. The aim is to investigate the performance of the synthesized composites of Mg-3Si together with HA in terms of mechanical integrity hardness and Young’s moduli corrosion resistance and in-vitro bioactivity.

Findings

Mechanical and surface characterization results indicate that alloying of Si leads to the formation of fine Mg2 Si eutectic dense structure, hence increasing hardness while reducing the ductility of the composite. On the other hand, the allying of HA in Mg-3Si matrix leads to the formation of structural porosity (5-13 per cent), thus resulting in low Young’s moduli. It is hypothesized that biocompatible phases formed within the composite enhanced the corrosion performance and bio-mechanical integrity of the composite. The degradation rate of Mg-3Si composite was reduced from 2.05 mm/year to 1.19 mm/year by the alloying of HA elements. Moreover, the fabricated composites showed an excellent bioactivity and offered a channel/interface to MG-63 cells for attachment, proliferation and differentiation.

Originality/value

Overall, the findings suggest that the Mg-3Si-HA composite fabricated by MA and plasma sintering may be considered as a potential biodegradable material for orthopedic application.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 14 March 2024

Chongjun Wu, Yutian Chen, Xinyi Wei, Junhao Xu and Dongliu Li

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is…

Abstract

Purpose

This paper is devoted to prepare micro-cone structure with variable cross-section size by Stereo Lithography Appearance (SLA)-based 3D additive manufacturing technology. It is mainly focused on analyzing the forming mechanism of equipment and factors affecting the forming quality and accuracy, investigating the influence of forming process parameters on the printing quality and optimization of the printing quality. This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Design/methodology/approach

The µ-SLA process is optimized based on the variable cross-section micro-cone structure printing. Multi-index analysis method was used to analyze the influence of process parameters. The process parameter influencing order is determined and validated with flawless micro array structure.

Findings

After the optimization analysis of the top diameter size, the bottom diameter size and the overall height, the influence order of the printing process parameters on the quality of the micro-cone forming is: exposure time (B), print layer thickness (A) and number of vibrations (C). The optimal scheme is A1B3C1, that is, the layer thickness of 5 µm, the exposure time of 3000 ms and the vibration of 64x. At this time, the cone structure with the bottom diameter of 50 µm and the cone angle of 5° could obtain a better surface structure.

Originality/value

This study is expected to provide a µ-SLA surface preparation technology and process parameters selection with low cost, high precision and short preparation period for microstructure forming.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 16 October 2018

Ranvijay Kumar, Rupinder Singh and Ilenia Farina

Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a…

6679

Abstract

Purpose

Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a milestone in rapid manufacturing (RM), customized design and structural applications. Being compatible as functionally graded materials in a single structural form, multi-material-based 3D printed parts can be applied in structural applications to get the benefit of modified properties.

Design/methodology/approach

The fused deposition modelling (FDM) is one of the established low cost 3DP techniques which can be used for printing functional/ non-functional prototypes in civil engineering applications.

Findings

The present study is focused on multi-material printing of primary recycled acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and high impact polystyrene (HIPS) in composite form. Thermal (glass transition temperature and heat capacity) and mechanical properties (break load, break strength, break elongation, percentage elongation at break and Young’s modulus) have been analysed to observe the behaviour of multi-material composites prepared by 3DP. This study also highlights the process parameters optimization of FDM supported with photomicrographs.

Originality/value

The present study is focused on multi-material printing of primary recycled ABS, PLA and HIPS in composite form.

Details

PSU Research Review, vol. 2 no. 2
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 7 January 2021

Giovanni Gómez-Gras, Marco A. Pérez, Jorge Fábregas-Moreno and Guillermo Reyes-Pozo

This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition…

4751

Abstract

Purpose

This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies.

Design/methodology/approach

The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations.

Findings

The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment.

Originality/value

This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Only Open Access

Year

All dates (251)

Content type

1 – 10 of 251