Search results

1 – 10 of 880
Book part
Publication date: 1 September 2021

Amitava Mitra

A majority of products for manufacturing or consumers have multiple characteristics that must meet the requirements of the customer. For example, a steel beam any have dimensional…

Abstract

A majority of products for manufacturing or consumers have multiple characteristics that must meet the requirements of the customer. For example, a steel beam any have dimensional tolerances on its length, width, or height and functional tolerances on its strength. The characteristics are influenced by different processes that create the product. For an individual characteristic, process capability measures exist that convey the degree to which the characteristic meets the specification requirements. Such measures may indicate the proportion of nonconforming product related to the particular characteristic, under some distributional assumptions of the characteristic. For products with multiple characteristics, the unit costs of rectification may be different, making the satisfaction of some characteristics meeting customer requirements more important than others. In this paper, an aggregate process capability performance measure is developed that considers the relative importance of the characteristic based on unit costs of nonconformance. Based on the aggregate measure, appropriate process capability measures for the individual measures are also derived. Bounds on the aggregate capability measures are also established.

Article
Publication date: 14 July 2023

Guozhi Xu, Xican Li and Hong Che

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based…

Abstract

Purpose

In order to improve the estimation accuracy of soil organic matter, this paper aims to establish a modified model for hyperspectral estimation of soil organic matter content based on the positive and inverse grey relational degrees.

Design/methodology/approach

Based on 82 soil sample data collected in Daiyue District, Tai'an City, Shandong Province, firstly, the spectral data of soil samples are transformed by the first order differential and logarithmic reciprocal first order differential and so on, the correlation coefficients between the transformed spectral data and soil organic matter content are calculated, and the estimation factors are selected according to the principle of maximum correlation. Secondly, the positive and inverse grey relational degree model is used to identify the samples to be identified, and the initial estimated values of the organic matter content are obtained. Finally, based on the difference information between the samples to be identified and their corresponding known patterns, a modified model for the initial estimation of soil organic matter content is established, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the methods of logarithmic reciprocal first order differential and the first-order differential of the square root for transforming the original spectral data are more effective, which could significantly improve the correlation between soil organic matter content and spectral data. The modified model for hyperspectral estimation of soil organic matter has high estimation accuracy, the average relative error (MRE) of 11 test samples is 4.091%, and the determination coefficient (R2) is 0.936. The estimation precision is higher than that of linear regression model, BP neural network and support vector machine model. The application examples show that the modified model for hyperspectral estimation of soil organic matter content based on positive and inverse grey relational degree proposed in this article is feasible and effective.

Social implications

The model in this paper has clear mathematical and physics meaning, simple calculation and easy programming. The model not only fully excavates and utilizes the internal information of known pattern samples with “insufficient and incomplete information”, but also effectively overcomes the randomness and grey uncertainty in the spectral estimation of soil organic matter. The research results not only enrich the grey system theory and methods, but also provide a new approach for hyperspectral estimation of soil properties such as soil organic matter content, water content and so on.

Originality/value

The paper succeeds in realizing both a modified model for hyperspectral estimation of soil organic matter based on the positive and inverse grey relational degrees and effectively dealing with the randomness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 4
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 May 2020

Changhai Lin, Zhengyu Song, Sifeng Liu, Yingjie Yang and Jeffrey Forrest

The purpose of this paper is to analyze the mechanism and filter efficacy of accumulation generation operator (AGO)/inverse accumulation generation operator (IAGO) in the…

Abstract

Purpose

The purpose of this paper is to analyze the mechanism and filter efficacy of accumulation generation operator (AGO)/inverse accumulation generation operator (IAGO) in the frequency domain.

Design/methodology/approach

The AGO/IAGO in time domain will be transferred to the frequency domain by the Fourier transform. Based on the consistency of the mathematical expressions of the AGO/IAGO in the gray system and the digital filter in digital signal processing, the equivalent filter model of the AGO/IAGO is established. The unique methods in digital signal processing systems “spectrum analysis” of AGO/IAGO are carried out in the frequency domain.

Findings

Through the theoretical study and practical example, benefit of spectrum analysis is explained, and the mechanism and filter efficacy of AGO/IAGO are quantitatively analyzed. The study indicated that the AGO is particularly suitable to act on the system's behavior time series in which the long period parts is the main factor. The acted sequence has good effect of noise immunity.

Practical implications

The AGO/IAGO has a wonderful effect on the processing of some statistical data, e.g. most of the statistical data related to economic growth, crop production, climate and atmospheric changes are mainly affected by long period factors (i.e. low-frequency data), and most of the disturbances are short-period factors (high-frequency data). After processing by the 1-AGO, its high frequency content is suppressed, and its low frequency content is amplified. In terms of information theory, this two-way effect improves the signal-to-noise ratio greatly and reduces the proportion of noise/interference in the new sequence. Based on 1-AGO acting, the information mining and extrapolation prediction will have a good effect.

Originality/value

The authors find that 1-AGO has a wonderful effect on the processing of data sequence. When the 1-AGO acts on a data sequence X, its low-pass filtering effect will benefit the information fluctuations removing and high-frequency noise/interference reduction, so the data shows a clear exponential change trends. However, it is not suitable for excessive use because its equivalent filter has poles at the non-periodic content. But, because of pol effect at zero frequency, the 1-AGO will greatly amplify the low-frequency information parts and suppress the high-frequency parts in the information at the same time.

Details

Grey Systems: Theory and Application, vol. 11 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 February 1986

I.R. CIRIC and S.H. WONG

A simple and efficient method for the finite‐element solution of three‐dimensional unbounded region field problems is presented in this paper. The proposed technique consists of a…

Abstract

A simple and efficient method for the finite‐element solution of three‐dimensional unbounded region field problems is presented in this paper. The proposed technique consists of a global mapping of the original unbounded region onto a bounded domain by applying a standard inversion transformation to the spatial coordinates. Same numerical values of the potential function are assigned to the transformed points. The functional associated to the field problem, which incorporates the boundary conditions, has the same structure in the transformed domain as that in the original one. This allows the implementation of the standard finite‐element method in the bounded transformed domain. The finite‐element solution is obtained on the basis of a complete discretization of the bounded, transformed domain by standard finite elements, with no approximate assumption made for the behaviour of the field at infinity, other than that introduced by the finite‐element idealization. This leads to improved accuracy of the numerical results, compared to those obtained in the original region, for the same number of nodes. Application to three test problems illustrates the high efficiency of the proposed method in terms of both accuracy and computational effort. The technique presented is particularly recommended for exterior‐field problems in the presence of material inhomogeneities and anisotropies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 5 no. 2
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 23 August 2011

Olympia Panagouli and Euripidis Mistakidis

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface.

Design/methodology/approach

A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s, a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ. At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved.

Findings

The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution.

Originality/value

The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers.

Article
Publication date: 14 June 2021

Ruirui Shao, Zhigeng Fang, Liangyan Tao, Su Gao and Weiqing You

During the service period of communication satellite systems, their performance is often degraded due to the depletion mechanism. In this paper, the grey system theory is applied…

Abstract

Purpose

During the service period of communication satellite systems, their performance is often degraded due to the depletion mechanism. In this paper, the grey system theory is applied to the multi-state system effectiveness evaluation and the grey Lz-transformation ADC (availability, dependability and capability) effectiveness evaluation model is constructed to address the characteristics of the communication satellite system such as different constituent subsystems, numerous states and the inaccuracy and insufficiency of data.

Design/methodology/approach

The model is based on the ADC effectiveness evaluation method, combined with the Lz transformation and uses the definite weighted function of the three-parameter interval grey number as a bridge to incorporate the possibility of system performance being greater than the task demand into the effectiveness solution algorithm. At the same time, using MATLAB (Matrix laboratory) to solve each state probability, the same performance level in the Lz transform is combined. Then, the system effectiveness is obtained by Python.

Findings

The results show that the G-Lz-ADC model constructed in this paper can accurately evaluate the effectiveness of static/dynamic systems and certain/uncertain system and also has better applicability in evaluating the effectiveness of the multi-state complex system.

Practical implications

The G-Lz-ADC effectiveness evaluation model constructed in this paper can effectively reduce the complexity of traditional effectiveness evaluation models by combining the same performance levels in the Lz-transform and solving the effectiveness of the system with the help of computer programming, providing a new method for the effectiveness evaluation of the complex MSS. At the same time, the weaknesses of the system can be identified, providing a theoretical basis for improving the system’s effectiveness.

Originality/value

The possibility solution method based on the definite weighted function comparing the two three-parameter interval grey numbers is constructed, which compensates for the traditional calculation of the probability based on numerical values and subjective preferences of decision-makers. Meanwhile, the effectiveness evaluation model integrates the basic theories of three-parameter interval grey number and its definite weighted function, Grey−Markov, grey universal generating function (GUGF), grey multi-state system (GMSS), etc., which is an innovative method to solve the effectiveness of a multi-state instantaneous communication satellite system.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 17 January 2023

Jintao Yu, Xican Li, Shuang Cao and Fajun Liu

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by…

Abstract

Purpose

In order to overcome the uncertainty and improve the accuracy of spectral estimation, this paper aims to establish a grey fuzzy prediction model of soil organic matter content by using grey theory and fuzzy theory.

Design/methodology/approach

Based on the data of 121 soil samples from Zhangqiu district and Jiyang district of Jinan City, Shandong Province, firstly, the soil spectral data are transformed by spectral transformation methods, and the spectral estimation factors are selected according to the principle of maximum correlation. Then, the generalized greyness of interval grey number is used to modify the estimation factors of modeling samples and test samples to improve the correlation. Finally, the hyper-spectral prediction model of soil organic matter is established by using the fuzzy recognition theory, and the model is optimized by adjusting the fuzzy classification number, and the estimation accuracy of the model is evaluated using the mean relative error and the determination coefficient.

Findings

The results show that the generalized greyness of interval grey number can effectively improve the correlation between soil organic matter content and estimation factors, and the accuracy of the proposed model and test samples are significantly improved, where the determination coefficient R2 = 0.9213 and the mean relative error (MRE) = 6.3630% of 20 test samples. The research shows that the grey fuzzy prediction model proposed in this paper is feasible and effective, and provides a new way for hyper-spectral estimation of soil organic matter content.

Practical implications

The research shows that the grey fuzzy prediction model proposed in this paper can not only effectively deal with the three types of uncertainties in spectral estimation, but also realize the correction of estimation factors, which is helpful to improve the accuracy of modeling estimation. The research result enriches the theory and method of soil spectral estimation, and it also provides a new idea to deal with the three kinds of uncertainty in the prediction problem by using the three kinds of uncertainty theory.

Originality/value

The paper succeeds in realizing both the grey fuzzy prediction model for hyper-spectral estimating soil organic matter content and effectively dealing with the randomness, fuzziness and grey uncertainty in spectral estimation.

Details

Grey Systems: Theory and Application, vol. 13 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1211

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 14 October 2013

Du-Ming Tsai and Tzu-Hsun Tseng

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object…

Abstract

Purpose

Mobile robots become more and more important for many potential applications such as navigation and surveillance. The paper proposes an image processing scheme for moving object detection from a mobile robot with a single camera. It especially aims at intruder detection for the security robot on either smooth paved surfaces or uneven ground surfaces.

Design/methodology/approach

The core of the proposed scheme is the template matching with basis image reconstruction for the alignment between two consecutive images in the video sequence. The most representative template patches in one image are first automatically selected based on the gradient energies in the patches. The chosen templates then form a basis matrix, and the instances of the templates in the subsequent image are matched by evaluating their reconstruction error from the basis matrix. For the two well-aligned images, a simple and fast temporal difference can thus be applied to identify moving objects from the background.

Findings

The proposed template matching can tolerate in rotation (±10°) and (±10°) in scaling. By adding templates with larger rotational angles in the basis matrixes, the proposed method can be further extended for the match of images from severe camera vibrations. Experimental results of video sequences from a non-stationary camera have shown that the proposed scheme can reliably detect moving objects from the scenes with either minor or severe geometric transformation changes. The proposed scheme can achieve a fast processing rate of 32 frames per second for an image of size 160×120.

Originality/value

The basic approaches for moving object detection with a mobile robot are feature-point match and optical flow. They are relatively computational intensive and complicated to implement for real-time applications. The proposed template selection and template matching are very fast and easy to implement. Traditional template matching methods are based on sum of squared differences or normalized cross correlation. They are very sensitive to minor displacement between two images. The proposed new similarity measure is based on the reconstruction error from the test image and its reconstruction from the linear combination of the templates. It is thus robust under rotation and scale changes. It can be well suited for mobile robot surveillance.

Details

Industrial Robot: An International Journal, vol. 40 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 880