Search results

1 – 10 of over 2000
Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 1995

Andreas Heege, Pierre Alart and Eugenio Oñate

A consistent formulation for unilateral contact problems includingfrictional work hardening or softening is proposed. The approach is based onan augmented Lagrangian approach…

Abstract

A consistent formulation for unilateral contact problems including frictional work hardening or softening is proposed. The approach is based on an augmented Lagrangian approach coupled to an implicit quasi‐static Finite Element Method. Analogous to classical work hardening theory in elasto‐plasticity, the frictional work is chosen as the internal variable for formulating the evolution of the friction convex. In order to facilitate the implementation of a wide range of phenomenological models, the friction coefficient is defined in a parametrised form in terms of Bernstein polynomials. Numerical simulation of a 3D deep‐drawing operation demonstrates the performance of the methods for predicting frictional contact phenomena in the case of large sliding paths including high curvatures.

Details

Engineering Computations, vol. 12 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 July 1995

F. Lebon

This paper is the description of a new two‐grid algorithm tosolve frictional contact problems. A regularized formulation is introducedand the discretized problem is solved using…

Abstract

This paper is the description of a new two‐grid algorithm to solve frictional contact problems. A regularized formulation is introduced and the discretized problem is solved using an internal non linear two‐grid technique coupled with a diagonal fixed point algorithm. Mathematical background is given, and superconvergence is obtained.

Details

Engineering Computations, vol. 12 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2005

R.A. Abu Zitar

The problem of estimating the minimum forces extracted by robot fingers on the surface of a grasped rigid object is very crucial to guarantee the stability of the grip without…

Abstract

Purpose

The problem of estimating the minimum forces extracted by robot fingers on the surface of a grasped rigid object is very crucial to guarantee the stability of the grip without causing defect or damage to the grasped object. Solving this problem is investigated in this paper. Moreover, the optimum sets of parameters used to tune the algorithm are also studied here.

Design/methodology/approach

Ant Colony Optimization (ACO), which is a swarm intelligence‐based method, is used in this work to solve this problem. The problem under scope is a complex, constraint optimization problem. We develop our own approach to calculate those minimum forces. Ants ability to reorganize and behave collectively is modelled here. The required forces are a result of the final ants distribution around the fingers contact points. Ants move from contact point to another following the maximum pheromone level direction until they settle on a solution that accomplishes the given criteria. Ants number on a contact point constitutes the total force exerted by a finger on that contact point. The process is repeated until optimum solution is found. Simulations are repeated to track down most suitable ACO parameters for this type of problems and with different fingers configurations.

Findings

The results show that ACO can find optimum fingers forces for grasping rigid objects. These objects could be any polygon with or without friction between the fingers tips and the object surface. The method is computationally acceptable and can be applied with different fingers configurations and with different friction coefficients. We found that the optimal set of parameters used to tune ACO is independent of the initial number of ants on each location.

Originality/value

In this paper we present a very original, new, and interesting technique used to solve the optimum grasping forces of rigid objects. It is a well‐known fact that standard optimization techniques have their own requirements and limitations. This technique is based on swarm intelligence. This work opens the door for further investigations on how nature based methods can be used to solve complex problems. ACO offers a simple, yet structure approach to solve nonlinear constraint optimization problems.

Details

Industrial Robot: An International Journal, vol. 32 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1995

Dominique Lochegnies and Jerome Oudin

New contact boundary modelling is achieved with a basic set of 2 and 3dimension contact primitives. Contact constraints are originally introducedin the variational equations and…

42

Abstract

New contact boundary modelling is achieved with a basic set of 2 and 3 dimension contact primitives. Contact constraints are originally introduced in the variational equations and associated Newton—Raphson scheme via an external penalty formulation using primitive equations. Consequently, penalty part of external load vector and tangent stiffness matrices are developed for all contact primitives. In this way, contact prescribed boundary displacements are also taken into account. Contact treatment is then completed with Newton—Raphson elements for elastic and plastic regularized friction constitutive models. In this paper, the process is extended to elastoplastic models. Finally, we propose a self acting procedure with contact algorithms (interiority, sliding and contact loss) and related subroutines for implementation in finite element framework. We illustrate these developments by means of two‐dimensional open die forging and three‐dimensional plate coining typical benchmarks with reference to bulk elastoplastic and viscoplastic constitutive models.

Details

Engineering Computations, vol. 12 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1991

PHILIPPE HRYCAJ, SERGE CESCOTTO and J. OUDIN

Inside the finite element framework of LAGAMINE code, the contact conditions are introduced with specific two‐node interface elements and four‐node quadrangular elements or…

Abstract

Inside the finite element framework of LAGAMINE code, the contact conditions are introduced with specific two‐node interface elements and four‐node quadrangular elements or four‐node one point quadrature elements. A non‐associated flow rule is involved for sliding unilateral contact modelling. Two methods of penalty factor computations in the penalty contact algorithms are presented. These methods are then used for contact modelling of two isothermal examples: axisymmetric tube expansion and asymmetric slab bending, the material bulk constitutive equation being isotropic and elasto‐plastic.

Details

Engineering Computations, vol. 8 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1996

C. Blanze, L. Champaney, J.‐Y. Cognard and P. Ladevèze

Presents a modular method for obtaining either a quick or a precise calculation for three‐dimensional structure assemblies with local non‐linearities, such as unilateral contact

Abstract

Presents a modular method for obtaining either a quick or a precise calculation for three‐dimensional structure assemblies with local non‐linearities, such as unilateral contact with friction, or technological components, such as prestressed bolt joints. An iterative method, including a domain‐decomposition technique, is proposed to solve such quasi‐static problems in small perturbations. Two types of entities are introduced: sub‐structures and interfaces. A local and a global stage are successively carried out by an iterative algorithm until convergence. The linear problem in the global stage is solved by a FEM (3D case) or by another approach using Trefftz functions (2D axisymmetrical case). Applications developed with AÉROSPATIALE‐Les Mureaux are presented and concern the study of structure joints with different types of flanges.

Details

Engineering Computations, vol. 13 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 August 2011

Olympia Panagouli and Euripidis Mistakidis

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the…

Abstract

Purpose

The purpose of this paper is to investigate the influence of the resolution with which interfaces of fractal geometry are represented, on the contact area and consequently on the contact interfacial stresses. The study is based on a numerical approach. The paper focuses on the differences between the cases of elastic and inelastic materials having as primary parameter the resolution of the interface.

Design/methodology/approach

A multi‐resolution parametric analysis is performed for fractal interfaces dividing a plane structure into two parts. On these interfaces, unilateral contact conditions are assumed to hold. The computer‐generated surfaces adopted here are self‐affine curves, characterized by a precise value of the resolution δ of the fractal set. Different contact simulations are studied by applying a horizontal displacement s on the upper part of the structure. For every value of s, a solution is taken in terms of normal forces and displacements at the interface. The procedure is repeated for different values of the resolution δ. At each scale, a classical Euclidean problem is solved by using finite element models. In the limit of the finest resolution, fractal behaviour is achieved.

Findings

The paper leads to a number of interesting conclusions. In the case of linear elastic analysis, the contact area and, consequently, the contact interfacial stresses depend strongly on the resolution of the fractal interface. Contrary, in the case of inelastic analysis, this dependence is verified only for the lower resolution values. As the resolution becomes higher, the contact area tends to become independent from the resolution.

Originality/value

The originality of the paper lies on the results and the corresponding conclusions obtained for the case of inelastic material behaviour, while the results for the case of elastic analysis verify the findings of other researchers.

Article
Publication date: 29 May 2009

Rodrigo Rossi, Marcelo Krajnc Alves and Hazim Ali Al‐Qureshi

The purpose of this paper is to investigate the application of the element‐free Galerkin (EFG) method to the simulation of metal forming processes and to propose a strategy to…

Abstract

Purpose

The purpose of this paper is to investigate the application of the element‐free Galerkin (EFG) method to the simulation of metal forming processes and to propose a strategy to deal with volumetric locking problem in this context.

Design/methodology/approach

The J2 elastoplastic material model, employed in the work, assumes a multiplicative decomposition of the deformation gradient into an elastic and a plastic part and incorporates a non‐linear isotropic hardening response. The constitutive model is written in terms of the rotated Kirchhoff stress and the logarithmic strain measure. A Total Lagrangian formulation of the problem is considered in order to improve the computational performance of the proposed algorithm. The imposition of the essential boundary conditions and also of the unilateral contact with friction condition are made by the application of the Augmented Lagrangian method. Here, aspects related to the volumetric locking are investigated and an F‐bar approach is applied.

Findings

The results show that the proposed approach presents no volumetric locking phenomenon when using the mean dilation approach. Moreover, differently from finite element approximations, no hour‐glass instabilities in the deformation pattern are observed, avoiding in this way the need to devise additional stabilization procedures in the proposed procedure.

Originality/value

This paper demonstrates the implementation and validation of the mean dilation approach, in the scope of the EFG, which was successful in coping with the volumetric locking phenomena and presented no hour‐glass instabilities in the problem cases considered in this work.

Details

Engineering Computations, vol. 26 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 2000