Search results

1 – 10 of 302
Article
Publication date: 28 May 2021

Zubair Ashraf and Mohammad Shahid

The proposed IT2FMOVMI model intends to concurrently minimize total cost and warehouse space for the single vendor-retailer, multi-item and a consolidated vendor store. Regarding…

Abstract

Purpose

The proposed IT2FMOVMI model intends to concurrently minimize total cost and warehouse space for the single vendor-retailer, multi-item and a consolidated vendor store. Regarding demand and order quantities with the deterministic and type-1 fuzzy numbers, we have also formulated the classic/crisp MOVMI model and type-1 fuzzy MOVMI (T1FMOVMI) model. The suggested solution technique can solve both crisp MOVMI and T1FMOVMI problems. By finding the optimal ordered quantities and backorder levels, the Pareto-fronts are constructed to form the solution sets for the three models.

Design/methodology/approach

A multi-objective vendor managed inventory (MOVMI) is the most recognized marketing and delivery technique for the service provider and the retail in the supply chain in Industry 4.0. Due to the evolving market conditions, the characteristics of the individual product, the delivery period and the manufacturing costs, the demand rate and order quantity of the MOVMI device are highly unpredictable. In such a scenario, a MOVMI system with a deterministic demand rate and order quantity cannot be designed to estimate the highly unforeseen cost of the problem. This paper introduces a novel interval type-2 fuzzy multi-objective vendor managed inventory (IT2FMOVMI) system, which uses interval type-2 fuzzy numbers (IT2FNs) to represent demand rate and order quantities. As the model is an NP-hard, the well-known meta-heuristic algorithm named NSGA-II (Non-dominated sorted genetic algorithm-II) with EKM (Enhanced Karnink-Mendel) algorithm based solution method has been established.

Findings

The experimental simulations for the five test problems that demonstrated distinct conditions are considered from the real-datasets of SAPCO company. Experimental study concludes that T1FMOVMI and crisp MOVMI schemes are outclassed by IT2FMOVMI model, offering more accurate Pareto-Fronts and efficiency measurement values.

Originality/value

Using fuzzy sets theory, a significant amount of work has been already done in past decades from various points of views to model the MOVMI. However, this is the very first attempt to introduce type-2 fuzzy modelling for the problem to address the realistic implementation of the imprecise parameters.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 May 2020

Ahmet Çalık

This study aims to create a model for defining the best supplier for a company and allocating order that considers sustainability criteria beyond the traditional selection…

Abstract

Purpose

This study aims to create a model for defining the best supplier for a company and allocating order that considers sustainability criteria beyond the traditional selection criteria.

Design/methodology/approach

In this paper, sustainable supplier Selection and order allocation (SSS and OA) problem is managed based on a multiobjective linear programming (MOLP) model that incorporates sustainability dimensions. First, an interval type-2 fuzzy analytic hierarchy process (FAHP) method is applied for the main criteria and subcriteria to determine the weight of the selected criteria. Then, these values are used to convert the proposed MOLP model into a single-objective model.

Findings

The economic criterion (0.438) was the most important criterion for SSS in the agricultural machinery sector, followed by the social criterion (0.333) and the environmental criterion (0.229).

Practical implications

The results show that the proposed framework can be utilized by the agricultural machinery industry for SSS and OA.

Originality/value

The proposed framework provides to develop an integrated model by interval type-2 fuzzy sets for SSS and OA, taking into account the relationships between qualitative and quantitative evaluation criteria with different priorities. The validity of the developed model is confirmed by a case study of the agricultural machinery industry in Turkey.

Details

Journal of Enterprise Information Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 19 January 2021

Srikant Gupta, Prasenjit Chatterjee, Morteza Yazdani and Ernesto D.R. Santibanez Gonzalez

Industrial organizations often face difficulties in finding out the methods to meet ever increasing customer expectations and to remain competitive in the global market while…

Abstract

Purpose

Industrial organizations often face difficulties in finding out the methods to meet ever increasing customer expectations and to remain competitive in the global market while maintaining controllable expenses. An effective and efficient green supply chain management (GSCM) can provide a competitive edge to the business. This paper focusses on the selection of green suppliers while simultaneously balancing economic, environmental and social issues.

Design/methodology/approach

In this study, it is assumed that two types of decision-makers (DMs), namely, the first level and second-level DMs operate at two separate groups in GSC. The first-level DMs always empathise to optimize carbon emissions, per unit energy consumption per product and per unit waste production, while the second-level DMs seek to optimize ordering costs, number of rejected units and number of late delivered units in the entire GSCM. In this paper, fuzzy goal programming (FGP) approach has been adopted to obtain compromise solution of the formulated problem by attaining the uppermost degree of each membership goal while reducing their deviational variables. Furthermore, demand has also been forecasted using exponential smoothing analysis. The model is verified on a real-time industrial case study.

Findings

This research enables DMs to analyse uncertainty scenarios in GSCM when information about different parameters are not known precisely.

Research limitations/implications

The proposed model is restricted to vagueness only, however, DMs may need to consider probabilistic multi-choice scenarios also.

Practical implications

The proposed model is generic and can be applied for large-scale GSC environments with little modifications.

Originality/value

No prior attempt is made till date to present interval type-2 fuzzy sets in a multi-objective GSC environment where the DMs are at hierarchical levels. Interval type-2 fuzzy sets are considered as better ways to represent inconsistencies of human judgements, its incompleteness and imprecision more accurately and objectively. Also, crisp or deterministic forms of uncertain parameters have been obtained by taking expected value of the fuzzy parameters.

Details

Management Decision, vol. 59 no. 10
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 21 September 2018

Muhammet Deveci, Ibrahim Zeki Akyurt and Selahattin Yavuz

The purpose of this paper is to present a new public bread factory location selection for Istanbul Metropolitan Municipality (IMM).

Abstract

Purpose

The purpose of this paper is to present a new public bread factory location selection for Istanbul Metropolitan Municipality (IMM).

Design/methodology/approach

A two-stage methodology is proposed to determine the location for the public bread factory facility. This framework is based on both geographic information systems (GIS) and multi-criteria decision-making (MCDM) techniques. The first stage of the methodology aims to decrease the number of possible alternative locations to simplify the selection activity by applying GIS; the second stage utilises interval type-2 fuzzy MCDM approach to exactly determine the public bread factory site location.

Findings

In this study, the authors present weighted normalised-based interval type-2 hesitant fuzzy and interval type-2 hesitant fuzzy sets (IT2HFSs)-based compressed proportional assessment (COPRAS) methods to overcome facility location selection problem for a fourth public bread factory in Istanbul.

Practical implications

The results show that the proposed approach is practical and can be employed by the bakery industry.

Originality/value

In this study, the authors present a two-stage methodology for public bread factory site selection. In the first stage, the number of alternatives is reduced by the GIS. In the second stage, an interval type-2 fuzzy set is implemented for the evaluation of public bakery factory site alternatives. A new integrated approach based on COPRAS method and weighted normalised with IT2HFSs is proposed.

Details

Journal of Enterprise Information Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 28 April 2023

Daas Samia and Innal Fares

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a…

Abstract

Purpose

This study aims to improve the reliability of emergency safety barriers by using the subjective safety analysis based on evidential reasoning theory in order to develop on a framework for optimizing the reliability of emergency safety barriers.

Design/methodology/approach

The emergency event tree analysis is combined with an interval type-2 fuzzy-set and analytic hierarchy process (AHP) method. In order to the quantitative data is not available, this study based on interval type2 fuzzy set theory, trapezoidal fuzzy numbers describe the expert's imprecise uncertainty about the fuzzy failure probability of emergency safety barriers related to the liquefied petroleum gas storage prevent. Fuzzy fault tree analysis and fuzzy ordered weighted average aggregation are used to address uncertainties in emergency safety barrier reliability assessment. In addition, a critical analysis and some corrective actions are suggested to identify weak points in emergency safety barriers. Therefore, a framework decisions are proposed to optimize and improve safety barrier reliability. Decision-making in this framework uses evidential reasoning theory to identify corrective actions that can optimize reliability based on subjective safety analysis.

Findings

A real case study of a liquefied petroleum gas storage in Algeria is presented to demonstrate the effectiveness of the proposed methodology. The results show that the proposed methodology provides the possibility to evaluate the values of the fuzzy failure probability of emergency safety barriers. In addition, the fuzzy failure probabilities using the fuzzy type-2 AHP method are the most reliable and accurate. As a result, the improved fault tree analysis can estimate uncertain expert opinion weights, identify and evaluate failure probability values for critical basic event. Therefore, suggestions for corrective measures to reduce the failure probability of the fire-fighting system are provided. The obtained results show that of the ten proposed corrective actions, the corrective action “use of periodic maintenance tests” prioritizes reliability, optimization and improvement of safety procedures.

Research limitations/implications

This study helps to determine the safest and most reliable corrective measures to improve the reliability of safety barriers. In addition, it also helps to protect people inside and outside the company from all kinds of major industrial accidents. Among the limitations of this study is that the cost of corrective actions is not taken into account.

Originality/value

Our contribution is to propose an integrated approach that uses interval type-2 fuzzy sets and AHP method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers. In addition, the integration of fault tree analysis and fuzzy ordered averaging aggregation helps to improve the reliability of the fire-fighting system and optimize the corrective actions that can improve the safety practices in liquefied petroleum gas storage tanks.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 10 July 2020

Hafize Yılmaz and Özgür Kabak

Locating disaster response centers is one of the key elements of efficient relief operations. The location and infrastructure of the candidate facilities usually conform to the…

Abstract

Purpose

Locating disaster response centers is one of the key elements of efficient relief operations. The location and infrastructure of the candidate facilities usually conform to the required criteria at different levels. This study aims to identify the criteria for the main and local distribution center location problem separately and prioritize each candidate distribution center using a hybrid multiple criteria decision-making approach.

Design/methodology/approach

The proposed model incorporates analytic hierarchy process (AHP) and Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) under interval type-2 fuzzy sets (IT2FSs) to overcome the uncertainty of experts` judgments and expressions in the evaluations of candidate distribution centers. In the proposed approach, weights of the criteria are determined using type-2 fuzzy AHP and the candidate distribution centers are prioritized using type-2 fuzzy TOPSIS.

Findings

Transportation, cost, infrastructure and security are determined as the main criteria for the main distribution center location criteria. Cost, warehouse facilities and security are the main criteria for local distribution center location selection. Prioritization enables decision-makers to assess each alternative accordingly to be able to select the best locations/facilities for efficient disaster response operations.

Originality/value

This study proposes new multi-criteria decision support models for prioritizing disaster response distribution centers. IT2FSs are used to be able to reflect both the complexity and vagueness of disaster environment and expert opinions. Different support models are suggested for main and local distribution centers considering their different missions. The proposed methodology is applied in Istanbul city, Turkey, where a high-magnitude earthquake is expected.

Details

Journal of Enterprise Information Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 15 January 2018

Nitin Kumar Sahu, Atul Kumar Sahu and Anoop Kumar Sahu

Robot appraisement under various dimensions and directions is a crucial issue in real-time manufacturing scenario. Logistic robots are programable-independent movable devices…

Abstract

Purpose

Robot appraisement under various dimensions and directions is a crucial issue in real-time manufacturing scenario. Logistic robots are programable-independent movable devices capable of transporting stuffs in a logistic cycle. The purpose of this paper is to opt for the most economical robot under chains of criteria, which is always considered as a sizzling issue in an industrial domain.

Design/methodology/approach

The authors proposed a cluster approach, i.e. ratio analysis, reference point analysis and full mutification form, embedded type-2 fuzzy sets with weighted geometric aggregation operator (WGAO) to tackle the elected problem of industrial robot. The motive to use WGAO coupled with type-2 fuzzy sets is to effectively undertake the uncertainty associated with comprehensive information of professionals against defined dimensions. Furthermore, the cluster approach is used to carry out the comparative analysis for evaluating robust scores against candidate robot’s manufacturing firms, considering 59 crucial beneficial and non-beneficial dimensions. A case research study is carried out to demonstrate the validity of the proposed approach.

Findings

The most challenging task in real-time manufacturing scenario is robot selection for a particular industrial application. This problem has become more complex in recent years because of advanced features and facilities that are continuously being incorporated into the robots by different manufacturers. In the past decade, robots have been selected in accordance with cost criteria excluding other beneficial criteria, which results in declined product quality, customer’s expectation, ill productivity, higher deliver time, etc. The proposed research incorporates the aforesaid issues and provides the various important attributes needed to be considered for the optimum evaluation and selection of industrial robots.

Research limitations/implications

The need for changes in the technological dimensions (speed, productivity, navigation, upgraded product demands, etc.) of robot was encountered as a hardship work for managers to take wise decision dealing with a wide range of availability of robot types and models with distinct features in the manufacturing firms. The presented work aids the managers in taking their decisions effectively while dealing with the aforesaid circumstances.

Originality/value

The proposed work suggests chains of dimensions (59 crucial beneficial and non-beneficial dimensions) that can be used by managers to measure the economic worth of robot to carry out logistic activities in updated manufacturing environment. The proposed work evolves as an effective cluster approach-embedded type-2 fuzzy sets with WGAO to assess manufacturing firms under availability of low information.

Article
Publication date: 11 July 2019

Chao Ren, Xiaoxing Liu and Zongqing Zhang

The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment.

Abstract

Purpose

The purpose of this paper is to develop a risk evaluation method for the industrial network under high uncertain environment.

Design/methodology/approach

This paper introduces an extended safety and critical effect analysis (SCEA) method, which takes the weight of each industry in a network into risk assessment. Furthermore, expert experience and fuzzy logic are introduced for the evaluation of other parameters.

Findings

The proposed approach not only develops weight as the fifth parameter in quantitative risk assessment but also applies the interval type-2 fuzzy sets to depict the uncertainty in the risk evaluation process. The risk rating of each parameter excluding weight is determined by using the interval type-2 fuzzy numbers. The risk magnitude of each industry in the network is quantified by the extended SCEA method.

Research limitations/implications

There is less study in quantitative risk assessment in the industrial network. Additionally, fuzzy logic and expert experience are expressed in the presented approach. Moreover, different parameters can be determined by different weights in network risk assessment in the future study.

Originality/value

The extended SCEA method presents a new way to measure risk magnitude for industrial networks. The industrial network is developed in risk quantification by assessing weights of nodes as a parameter into the extended SCEA. The interval type-2 fuzzy number is introduced to model the uncertainty of risk assessment and to express the risk evaluation information from experts.

Details

Kybernetes, vol. 49 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 9 July 2018

Irem Otay, Embiye Senturk and Ferhan Çebi

The purpose of this paper is to propose a new integrated method for evaluating inventory of slow-moving items by introducing the application of fuzzy AHP method with interval

Abstract

Purpose

The purpose of this paper is to propose a new integrated method for evaluating inventory of slow-moving items by introducing the application of fuzzy AHP method with interval Type-2 fuzzy sets (IT2FSs) and ABC analysis.

Design/methodology/approach

In the study, fuzzy analytic hierarchy process (AHP) method with IT2FSs is employed to set the importance of criteria. The weights obtained from IT2 fuzzy AHP are used to classify slow-moving items in ABC analysis. In the application part, a real-life case study is presented.

Findings

The result of this study indicates that an integrated approach utilizing IT2 fuzzy AHP and ABC analysis can be used as a supportive tool for classification of slow-moving items. The problem is solved under fuzzy environment to handle uncertainties and lack of information about slow-moving items.

Practical implications

Actual data are provided from an automotive company for prioritizing a various criteria to evaluate and classify stocks and a hypothetical model integrated with IT2 fuzzy AHP and ABC analysis is demonstrated.

Originality/value

Apart from inventory classification literature, the study integrates fuzzy AHP method by employing interval IT2FSs and ABC analysis to solve the real-life inventory classification problem.

Details

Journal of Enterprise Information Management, vol. 31 no. 4
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 3 October 2016

Tong Wu and Xinwang Liu

The purpose of this paper is to overcome the drawbacks of analytic hierarchy process in solving complex decision-making problems, especially for the evaluation of enterprise…

Abstract

Purpose

The purpose of this paper is to overcome the drawbacks of analytic hierarchy process in solving complex decision-making problems, especially for the evaluation of enterprise technology innovation ability (ETIA). Because interval type-2 fuzzy sets (IT2 FSs) can handle uncertainty linguistic variables in a more flexible and precise way than type-1 fuzzy sets with their second fuzzy membership functions, a fuzzy ANP method with IT2 FSs is proposed to evaluate the ETIA.

Design/methodology/approach

The criteria of evaluation on ETIA are identified and an evaluation model for ETIA is constructed on the basis of the application analysis of ETIA and theoretical design of ANP. In addition, two different ranking methods of IT2 FSs are applied in processing the relationships between influence factors of ETIA.

Findings

By using the proposed interval type-2 fuzzy ANP (IT2 FANP) method, the efficiencies of the whole evaluation of ETIA can be measured and the important factors in the ETIA can also be determined. Compared with the type-1 FANP through the ranking results, the proposed IT2 FANP is more reasonable and robust for the evaluation of ETIA.

Practical implications

The proposed IT2 FANP method is applied on the evaluation of ETIA. With respect to the application, the proposed method can be used to evaluate many more complex problems that contain feedback and circular relationships.

Originality/value

The proposed IT2 FANP approach can solve the complexities and uncertainties at the same time. Considering the subjective initiative of decision-makers and the feedback between influence factors, the proposed method is more efficient than the existing type-1 approaches in the literature.

Details

Kybernetes, vol. 45 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 302