Search results

1 – 10 of 43
Open Access
Article
Publication date: 27 January 2023

Damira Dairabayeva, Asma Perveen and Didier Talamona

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a…

1197

Abstract

Purpose

Currently on additive manufacturing, extensive research is directed toward mitigating the main challenges associated with multi-material in fused filament fabrication which has a weak bonding strength between dissimilar materials. Low interfacial bonding strength leads to defects, anisotropy and temperature gradient in materials which negatively impact the mechanical performance of the multi-material prints. The purpose of this study was to assess the performance of different interface geometry designs in terms of the mechanical properties of the specimens.

Design/methodology/approach

Tensile test specimens were printed using: mono-material without a boundary interface, mono-material with the interface geometries (Face-to-face; U-shape; T-shape; Dovetail; Encapsulation; Mechanical interlocking; and Overlap) and multi-material with the interface geometries. The materials chosen with high and low compatibility were Tough polylactic acid (PLA) and TPU.

Findings

The main results of this study indicate that the interface geometries with the mechanical constriction between materials provide better structural integrity to the specimens. Moreover, in the case of the mono-material parts, the most effective interface design was the mechanical interlocking for both Tough PLA and TPU. On the other hand, in the case of multi-material specimens, the encapsulation showed the highest ultimate tensile strength, whereas the overlap and T-shape presented more robust bonding.

Originality/value

This study examines the mechanical performance, particularly tensile strength, strain at break, Young’s modulus and yield strength of different interface designs which were not studied in the previous studies.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Open Access
Article
Publication date: 5 November 2018

Wei Wei Liu, Berdy Weng and Scott Chen

The Kirkendall void had been a well-known issue for long-term reliability of semiconductor interconnects; while even the KVs exist at the interfaces of Cu and Sn, it may still be…

1608

Abstract

Purpose

The Kirkendall void had been a well-known issue for long-term reliability of semiconductor interconnects; while even the KVs exist at the interfaces of Cu and Sn, it may still be able to pass the condition of unbias long-term reliability testing, especially for 2,000 cycles of temperature cycling test and 2,000 h of high temperature storage. A large number of KVs were observed after 200 cycles of temperature cycling test at the intermetallic Cu3Sn layer which locate between the intermetallic Cu6Sn5 and Cu layers. These kinds of voids will grow proportional with the aging time at the initial stage. This paper aims to compare various IMC thickness as a function of stress test, the Cu3Sn and Cu6Sn5 do affected seriously by heat, but Ni3Sn4 is not affected by heat or moisture.

Design/methodology/approach

The package is the design in the flip chip-chip scale package with bumping process and assembly. The package was put in reliability stress test that followed AEC-Q100 automotive criteria and recorded the IMC growing morphology.

Findings

The Cu6Sn5 intermetallic compound is the most sensitive to continuous heat which grows from 3 to 10 µm at high temperature storage 2,000 h testing, and the second is Cu3Sn IMC. Cu6Sn5 IMC will convert to Cu3Sn IMC at initial stage, and then Kirkendall void will be found at the interface of Cu and Cu3Sn IMC, which has quality concerning issue if the void’s density grows up. The first phase to form and grow into observable thickness for Ni and lead-free interface is Ni3Sn4 IMC, and the thickness has little relationship to the environmental stress, as no IMC thickness variation between TCT, uHAST and HTSL stress test. The more the Sn exists, the thicker Ni3Sn4 IMC will be derived from this experimental finding compare the Cu/Ni/SnAg cell and Ni/SnAg cell.

Research limitations/implications

The research found that FCCSP can pass automotive criteria that follow AEC-Q100, which give the confidence for upgrading the package type with higher efficiency and complexities of the pin design.

Practical implications

This result will impact to the future automotive package, how to choose the best package methodology and what is the way to do the package. The authors can understand the tolerance for the kind of flip chip package, and the bump structure is then applied for high-end technology.

Originality/value

The overall three kinds of bump structures, Cu/Ni/SnAg, Cu/SnAg and Ni/SnAg, were taken into consideration, and the IMC growing morphology had been recorded. Also, the IMC had changed during the environmental stress, and KV formation was reserved.

Details

PSU Research Review, vol. 3 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 24 September 2019

Aboubakar Seddik Bouchikhi

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double…

1173

Abstract

Purpose

The purpose of this paper is to introduce a numerical investigation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) functionally graded material (FGM) plate subjected to tensile mechanical load.

Design/methodology/approach

For this purpose the variations of the material properties are applied at the integration points and at the nodes by implementing a subroutine USDFLD in the ABAQUS software. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is demonstrated. The variation of the J-integral according to the position, the length and the angle of rotation of cracks is examined; also the effect of different parameters for double notch FGM plate is investigated as well as the effect of band of FGM within the ceramic plate to reduce J-integral.

Findings

According to the numerical analysis, all parameters above played an important role in determining the J-integral.

Originality/value

The present study consists in investigating the simulation used to calculate the J-integral of the main crack behavior emanating from a semicircular notch and double semicircular notch and its interaction with another crack which may occur in various positions in (TiB/Ti) FGM plate under Mode I. The J-integral is determined for various load applied. The cracked plate is joined by bonding an FGM layer to TiB plate on its double side. The determination of the gain on J-integral by using FGM layer is highlighted. The calculation of J-integral of FGM’s involves the direction of the radius of the notch in order to reduce the J-integral.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 30 October 2020

Jiao-Long Zhang, Xian Liu, Yong Yuan, Herbert A. Mang and Bernhard L.A. Pichler

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to…

1050

Abstract

Purpose

Transfer relations represent analytical solutions of the linear theory of circular arches, relating each one of the kinematic and static variables at an arbitrary cross-section to the kinematic and static variables at the initial cross-section. The purpose of this paper is to demonstrate the significance of the transfer relations for structural analysis by means of three examples taken from civil engineering.

Design/methodology/approach

The first example refers to an arch bridge, the second one to the vault of a metro station and the third one to a real-scale test of a segmental tunnel ring.

Findings

The main conclusions drawn from these three examples are as follows: increasing the number of hangers/columns of the investigated arch bridge entails a reduction of the maximum bending moment of the arch, allowing it to approach, as much as possible, the desired thrust-line behavior; compared to the conventional in situ cast method, a combined precast and in situ cast method results in a decrease of the maximum bending moment of an element of the vault of the studied underground station by 46%; and the local behavior of the joints governs both the structural convergences and the bearing capacity of the tested segmental tunnel ring.

Originality/value

The three examples underline that the transfer relations significantly facilitate computer-aided engineering of circular arch structures, including arch bridges, vaults of metro stations and segmental tunnel rings.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 5 April 2013

Martin Goosey

72

Abstract

Details

Soldering & Surface Mount Technology, vol. 25 no. 2
Type: Research Article
ISSN: 0954-0911

Content available
Article
Publication date: 1 August 1999

David Margaroni

168

Abstract

Details

Industrial Lubrication and Tribology, vol. 51 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

12253

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 1 June 2002

237

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 74 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available

Abstract

Details

Soldering & Surface Mount Technology, vol. 23 no. 1
Type: Research Article
ISSN: 0954-0911

1 – 10 of 43