Search results

1 – 10 of 36
Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 August 2023

Fatih Yılmaz, Ercan Gürses and Melin Şahin

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test…

Abstract

Purpose

This study aims to evaluate and assess the elastoplastic properties of Ti-6Al-4V alloy manufactured by Arcam Q20 Plus electron beam melting (EBM) machine by a tensile test campaign and micro computerized tomography (microCT) imaging.

Design/methodology/approach

ASTM E8 tensile test specimens are designed and manufactured by EBM at an Arcam Q20 Plus machine. Surface quality is improved by machining to discard the effect of surface roughness. After surface machining, hot isostatic pressing (HIP) post-treatment is applied to half of the specimens to remove unsolicited internal defects. ASTM E8 tensile test campaign is carried out simultaneously with digital image correlation to acquire strain data for each sample. Finally, build direction and HIP post-treatment dependencies of elastoplastic properties are analyzed by F-test and t-test statistical analyses methods.

Findings

Modulus of elasticity presents isotropic behavior for each build direction according to F-test and t-test analysis. Yield and ultimate strengths vary according to build direction and post-treatment. Stiffness and strength properties are superior to conventional Ti-6Al-4V material; however, ductility turns out to be poor for aerospace structures compared to conventional Ti-6Al-4V alloy. In addition, micro CT images show that support structure leads to dense internal defects and pores at applied surfaces. However, HIP post-treatment diminishes those internal defects and pores thoroughly.

Originality/value

As a novel scientific contribution, this study investigates the effects of three orthogonal build directions on elastoplastic properties, while many studies focus on only two-build directions. Evaluation of Poisson’s ratio is the other originality of this study. Furthermore, another finding through micro CT imaging is that temporary support structures result in intense defects closer to applied surfaces; hence high-stress regions of structures should be avoided to use support structures.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 August 2022

Feride Tuğrul

The aim of this paper, using the intuitionistic fuzzy (IF)–set based Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method, is to create…

Abstract

Purpose

The aim of this paper, using the intuitionistic fuzzy (IF)–set based Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method, is to create multicriteria decision-making (MCDM) mechanism that evaluates the papers according to the offset print quality, separately for each of the CMYK colors. Thanks to the mechanism, the most suitable and the most unsuitable paper for printing is determined.

Design/methodology/approach

With the IF PROMETHEE method, respectively, deviations are calculated by linear criteria type; the overall IF preference relation matrix is obtained. Finally, the positive and negative outranking flows are calculated; by obtaining net outranking flows, all papers are ranked from best to worst for printability.

Findings

Based on the results of the MCDM algorithm; the best offset printing quality is Matte Coated 115 gr. for cyan, magenta and black and Glossy Coated 115 gr. for yellow. The worst offset printing quality for all papers is 70 gr. III. low grade paper. According to the findings, when all colors are examined, the best paper for offset printing quality is coated papers; the worst paper is III. low grade papers.

Originality/value

The creation of mechanism that evaluates all criteria together leads to the most accurate result. Cases of hesitation are also addressed using an IF-based algorithm; all criteria were assigned individual importance levels, and a single result was obtained by activating all of the criteria simultaneously. Therefore reasons, this is paper that will bring innovation and shed light on studies in this field.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2023

Ashish Kaushik and Ramesh Kumar Garg

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the…

Abstract

Purpose

This study aims to cover the overall gamut of rapid prototyping processes and biomaterials used for the fabrication of occlusal splints in a comprehensive manner and elucidate the characteristics of the materials, which are essential in determining their clinical efficacy when exposed to oral surroundings.

Design/methodology/approach

A collective analysis of published articles covering the use of rapid prototyping technologies in the fabrication of occlusal splints, including manufacturing workflow description and essential properties (mechanical- and thermal-based) evaluation of biocompatible splinting materials, was performed.

Findings

Without advances in rapid prototyping processes and materials engineering, occlusal splints would tend to underperform clinically due to biomechanical limitations.

Social implications

Three-dimensional printing can improve the process capabilities for commercial customization of biomechanically efficient occlusal splints.

Originality/value

Rapid technological advancement in dentistry with the extensive utilization of rapid prototyping processes, intra-oral scanners and novel biomaterial seems to be the potential breakthrough in the fabrication of customized occlusal splints which have endorsed occlusal splint therapy (OST) as a cornerstone of orthodontic treatment.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 April 2024

Kristijan Breznik, Naraphorn Paoprasert, Klara Novak and Sasitorn Srisawadi

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of…

Abstract

Purpose

This study aims to identify research trends and technological evolution in the polymer three-dimensional (3D) printing process that can effectively identify the direction of technological advancement and progress of acceptance in both society and key manufacturing industries.

Design/methodology/approach

The Scopus database was used to collect data on polymer 3D printing papers. This study uses bibliometric approach along with network analytic techniques to identify and discuss the most important countries and their scientific collaboration, compares income groups and analyses keyword trends.

Findings

It was found that top research production results from heavy investments in research and development. The USA has the highest number of papers among the high-income countries. However, scientific production in the other two income groups is strongly dominated by China and India. Keyword analysis shows that countries with lower incomes in certain areas, such as composite and bioprinting, have fallen behind other groups over time. International collaborations were suggested as mechanisms for those countries to catch up with the current research trends. The evolution of the research field, which started with a focus on 3D printing processes and shifted to printed part designs and their applications, was discussed. The advancement of the research topic suggests that translational research on polymer 3D printing has been led mainly by research production from higher-income countries and countries with large research and development investments.

Originality/value

Previous studies have conducted performance analysis, science mapping and network analysis in the field of 3D printing, but none have focused on global research trends classified by country income. This study has conducted a bibliometric analysis and compared the outputs according to various income levels according to the World Bank classification.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 36