Search results

1 – 10 of 40
Article
Publication date: 16 January 2017

Hanshan Li

The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform.

Abstract

Purpose

The purpose of this paper is to evaluate the detection performance of infrared photoelectric detection system and establish stable tracking platform.

Design/methodology/approach

This paper puts forward making use of the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target in infrared photoelectric detection system; researches the target optical characteristics based on the target imaging detection theory; sets up the heat balance equation of target’s surface node and gives the calculation method of total radiation intensity of flying target; and deduces the target detection distance calculation function; studies the changed regulation of radiation energy that charge coupled device (CCD) gain comes from target surface infrared heat radiations under different sky background luminance and different target flight attitude.

Findings

Through calculation and experiment analysis, the results show that when the target’s surface area increases or the target flight velocity is higher, the radiation energy that CCD obtained is higher, which is advantageous to the target stable detection in infrared photoelectric detection system.

Originality/value

This paper uses the finite element analysis method to set up the infrared radiation characteristics calculation model of flying target and give the calculation and experiment results; those results can provide some data and improve the design method of infrared photoelectric detection system, and it is of value.

Details

Sensor Review, vol. 37 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 September 2013

Hanshan Li and Zhiyong Lei

The purpose of this paper is to improve photoelectric detection target (PDT) optical detection performance and detection view, by analyzing its influence factors and putting…

Abstract

Purpose

The purpose of this paper is to improve photoelectric detection target (PDT) optical detection performance and detection view, by analyzing its influence factors and putting forward a new method to design its optical detection system.

Design/methodology/approach

Using rectangle linked photoelectric detector, with low noise and high response, to design optical detection system and gain faint projectile image information; bringing forward a deviating focusing technique to eliminate detection blind area of photoelectric detector; and designing adjustable slit diaphragm to weaken background light influence.

Findings

The results of experimentation in shooting range show that the new PDT has improved detection sensitivity and performance.

Originality/value

The paper presents a new design method in photoelectric detection target (PDT) optical detection system, which can provide a new method to design fire across measurement system and gain accurate projectile's coordinates data in the shooting range.

Article
Publication date: 7 December 2022

Tunan Chen, Fengxiang Ma, Yue Zhao, Zhenghai Liao, Zongjia Qiu and Guoqiang Zhang

This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid…

Abstract

Purpose

This paper aims to establish a photoacoustic detection system for SO2 using UV-LED and testify its feasibility for sensitive measurement. The work in this paper can avoid potential crossover interference in infrared (IR) range and also balance the capability and cost of feasible excitation for photoacoustic detection system.

Design/methodology/approach

In this experimental work, a cantilever-enhanced–based photoacoustic SO2 detection system using an ultraviolet (UV) LED light source with a light power of 4 mW as the excitation was established.

Findings

A feasible photoacoustic detection system for SO2 using UV-LED was established. Experimental results demonstrate that the detection limit of the system can reach the level of 0.667 ppm, which can serve as a reference for the application of PAS in insulation fault diagnosis.

Originality/value

This work investigated the potential of using ultraviolet photoacoustic spectroscopy to detect trace SO2, which provided an ideal replacement of infrared-laser-based detection system. In this paper, a photoacoustic detection system using LED with a low light power was established. Low light power requirement can expand the options of light sources accordingly. In this paper, the absorption characteristics of SO2 in the presented detection system and ultraviolet range were studied. And the detection limit of the presented system was given. Both of which can provide reference to SO2 detection in ambient SF6.

Details

Sensor Review, vol. 42 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 January 2018

Yuxin Miao, Guofeng Pan, Caixuan Sun, Ping He, Guanlong Cao, Chao Luo, Li Zhang and Hongliang Li

The purpose of this paper is to study the effect of doping, annealing temperature and visible optical excitation on CuO-ZnO nanocomposites’ acetone sensing properties and…

Abstract

Purpose

The purpose of this paper is to study the effect of doping, annealing temperature and visible optical excitation on CuO-ZnO nanocomposites’ acetone sensing properties and introduce an attractive candidate for acetone detection at about room temperature.

Design/methodology/approach

ZnO nanoparticles doped with CuO were prepared by sol-gel method, and the structure and morphology were characterized via X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy and Brunauer-Emmett-Teller. The photoelectric responses of CuO-ZnO nanocomposites to cetone under the irradiation of visible light were investigated at about 30°C. The photoelectric response mechanism was also discussed with the model of double Schottky.

Findings

The doping of CuO enhanced performance of ZnO nanoparticles in terms of the photoelectric responses and the gas response and selectivity to acetone of ZnO nanoparticles, in addition, decreasing the operating temperature to about 30ºC. The optimum performance was obtained by 4.17% CuO-ZnO nanocomposites. Even at the operating temperature, about 30ºC, the response to 1,000 ppm acetone was significantly increased to 579.24 under the visible light irradiation.

Practical implications

The sensor fabricated by 4.17% CuO-ZnO nanocomposites exhibited excellent acetone-sensing characteristics at about 30ºC. It is promising to be applied in low power and miniature acetone gas sensors.

Originality/value

In the present research, a new nanocomposite material of CuO-ZnO was prepared by Sol-gel method. The optimum gas sensing properties to acetone were obtained by 4.17% CuO-ZnO nanocomposites at about 30ºC operating temperature when it was irradiated by visible light with the wavelength more than 420 nm.

Details

Sensor Review, vol. 38 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 June 2020

Xiaohong Lu, Yu Zhou, Jinhui Qiao, Yihan Luan and Yongquan Wang

The purpose of this paper is to analyze the measurement error of a three-dimensional coordinate measurement system based on dual-position-sensitive detector (PSD) under different…

Abstract

Purpose

The purpose of this paper is to analyze the measurement error of a three-dimensional coordinate measurement system based on dual-position-sensitive detector (PSD) under different background light.

Design/methodology/approach

The mind evolutionary algorithm (MEA)-back propagation (BP) neural network is used to predict the three-dimensional coordinates of the points, and the influence of the background light on the measurement accuracy of the three-dimensional coordinates based on PSD is obtained.

Findings

The influence of the background light on the measurement accuracy of the system is quantitatively calculated. The background light has a significant influence on the prediction accuracy of the three-dimensional coordinate measurement system. The optical method, electrical method and photoelectric compensation method are proposed to improve the measurement accuracy.

Originality/value

BP neural network based on MEA is applied to the coordinate prediction of the three-dimensional coordinate measurement system based on dual-PSD, and the influence of background light on the measurement accuracy is quantitatively analyzed.

Details

Engineering Computations, vol. 38 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 May 2015

Wenhang Li, Yunhong Ji, Jing Wu and Jiayou Wang

The purpose of this paper is to provide a modified welding image feature extraction algorithm for rotating arc narrow gap metal active-gas welding (MAG) welding, which is…

Abstract

Purpose

The purpose of this paper is to provide a modified welding image feature extraction algorithm for rotating arc narrow gap metal active-gas welding (MAG) welding, which is significant for improving the accuracy and reliability of the welding process.

Design/methodology/approach

An infrared charge-coupled device (CCD) camera was utilized to obtain the welding image by passive vision. The left/right arc position was used as a triggering signal to capture the image when the arc is approaching left/right sidewall. Comparing with the conventional method, the authors’ sidewall detection method reduces the interference from arc; the median filter removes the welding spatter; and the size of the arc area was verified to reduce the reflection from welding pool. In addition, the frame loss was also considered in the authors’ method.

Findings

The modified welding image feature extraction method improves the accuracy and reliability of sidewall edge and arc position detection.

Practical implications

The algorithm can be applied to welding seam tracking and penetration control in rotating or swing arc narrow gap welding.

Originality/value

The modified welding image feature extraction method is robust to typical interference and, thus, can improve the accuracy and reliability of the detection of sidewall edge and arc position.

Details

Industrial Robot: An International Journal, vol. 42 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 2 December 2022

Lijun Dong, Naichao Chen, Jiawen Liang, Tingting Li, Zhanlin Yan and Bing Zhang

The purpose of this study is to provide an in-depth understanding about the indoor-orbital electrical inspection robot, which is useful for motivating the further investigation on…

Abstract

Purpose

The purpose of this study is to provide an in-depth understanding about the indoor-orbital electrical inspection robot, which is useful for motivating the further investigation on the inspection of electrical equipment. Currently, electric energy has a strong correlation with the economic development of the country. Intelligent substations play an important role in the transmission and distribution of the electricity; the maintenance of the substation has attracted intensive attention due to the requirement of reliability and safety. The indoor-orbital electrical inspection robot has increasingly become the main tool to realize the unmanned. Hence, a systematic review is conducted systematically reviewing the current technical status of the indoor-orbital electrical inspection robot and discuss the existed problems.

Design/methodology/approach

In this paper, the most essential achievements in the field of indoor-orbital electrical inspection robots were reported to present the current status, and the mechanical structures and key inspective technologies were also discussed.

Findings

Four recommendations are provided from the analyzed review, which have made constructive comments on the overall structural design, functionality, intelligence and future development direction of the indoor-orbital electrical inspection robot, respectively.

Originality/value

To the best of the authors’ knowledge, this is the first systematic review study on indoor-orbital electrical inspection robots; it fills the theoretical gap and proffers design ideas and directions for the development of the indoor-orbital electrical inspection robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Article
Publication date: 1 September 1999

69

Abstract

Details

Sensor Review, vol. 19 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 40