Search results

1 – 10 of over 10000
Article
Publication date: 9 December 2014

Yuko Nishiura, Takenobu Inoue and Misato Nihei

The authors are in the process of exploring an information support robot to support daily activities of people with mild cognitive impairment or dementia. The purpose of this…

Abstract

Purpose

The authors are in the process of exploring an information support robot to support daily activities of people with mild cognitive impairment or dementia. The purpose of this paper is to reveal how the robot should talk to an older woman with dementia to make her perform daily activities.

Design/methodology/approach

The robot asked to the participant to do some daily activities; Task A, taking medicine; Task B, measuring blood pressure; and Task C, cleaning up the room in three different ways for each task. In the talking pattern 1 (TP1), the robot simply informed what the tasks were. The talking patterns 2 and 3 (TP2 and TP3) were separated according to the process of activities in two and three steps, respectively. The participant was required to answer “Yes” if she understood what the robot talked to her, and perform the tasks.

Findings

The participant was not able to prepare water in the Task A when the robot spoke the TP1 (performance rate (PR) was 71.4 per cent). However, she could perfectly take medicine in the case when the robot spoke the processes of the task by the TP3 (PR was 100.0 per cent). The similar tendencies were observed in the Tasks B and C.

Research limitations/implications

Multicenter studies would be required to apply these findings to a larger population.

Originality/value

The authors confirmed that it might be important to determine how the robot talked to people with dementia to properly facilitate their daily activities.

Details

Journal of Assistive Technologies, vol. 8 no. 4
Type: Research Article
ISSN: 1754-9450

Keywords

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1416

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Article
Publication date: 3 April 2017

Zhuming Bi, Guoping Wang, Li Da Xu, Matt Thompson, Raihan Mir, Jeremy Nyikos, Armela Mane, Colton Witte and Cliff Sidwell

The purpose of this paper is to develop an information system which is based on the Internet of things (IoT) and used to support the communication and coordination in a…

Abstract

Purpose

The purpose of this paper is to develop an information system which is based on the Internet of things (IoT) and used to support the communication and coordination in a cooperative robot team.

Design/methodology/approach

The architecture of the IoT applications for decision-making activities in a complex system is elaborated, the focus lies on the effective implementation of system interactions at the device-level. A case study is provided to verify system performances.

Findings

The IoT concept has been introduced in an information system of a football robot team to support the coordination among team players. Various sensors are used to collect data from IoT, and data are processed for the controls of robotic players to achieve the better performance at the system level. The field test has shown the feasibility and effectiveness.

Research limitations/implications

To investigate how IoT can be utilized in an information system for making complex decisions effectively, the authors use the decision-support system for a football robot team to illustrate the approaches in developing data acquisition infrastructure, processing and utilizing real-time data for the communication and coordination of robot players in a dynamic competing environment. While the presented work has shown the feasibility of an IoT-based information system, more work are needed to integrate advanced sensors within the IoT and develop more intelligent algorithms to replace manually remote control for the operations of robot players.

Practical implications

The proposed system is specifically for a football robot team; however, the associated approaches are applicable to any decentralized system for developing an information system to support IoT-based communication and coordination within the system in the real-time mode.

Originality/value

The exploration of IoT applications is still at its early stage, existing relevant work is mostly limited to the development of system architecture, sensor networks, and communication protocols. In this paper, the methods on how to use massive real-time data for decision-making of a decentralized team have been investigated, and the proposed system has its theoretical significance to developing other decentralized wireless sensor networks and decision-making systems.

Details

Internet Research, vol. 27 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Open Access
Book part
Publication date: 18 July 2022

Marie Molitor and Maarten Renkema

This paper investigates effective human-robot collaboration (HRC) and presents implications for Human Resource Management (HRM). A brief review of current literature on HRM in the…

Abstract

This paper investigates effective human-robot collaboration (HRC) and presents implications for Human Resource Management (HRM). A brief review of current literature on HRM in the smart industry context showed that there is limited research on HRC in hybrid teams and even less on effective management of these teams. This book chapter addresses this issue by investigating factors affecting intention to collaborate with a robot by conducting a vignette study. We hypothesized that six technology acceptance factors, performance expectancy, trust, effort expectancy, social support, organizational support and computer anxiety would significantly affect a users' intention to collaborate with a robot. Furthermore, we hypothesized a moderating effect of a particular HR system, either productivity-based or collaborative. Using a sample of 96 participants, this study tested the effect of the aforementioned factors on a users' intention to collaborate with the robot. Findings show that performance expectancy, organizational support and computer anxiety significantly affect the intention to collaborate with a robot. A significant moderating effect of a particular HR system was not found. Our findings expand the current technology acceptance models in the context of HRC. HRM can support effective HRC by a combination of comprehensive training and education, empowerment and incentives supported by an appropriate HR system.

Details

Smart Industry – Better Management
Type: Book
ISBN: 978-1-80117-715-3

Keywords

Article
Publication date: 9 April 2024

M A Shariful Amin, Vess L. Johnson, Victor Prybutok and Chang E. Koh

The purpose of this research is to propose and empirically validate a theoretical framework to investigate the willingness of the elderly to disclose personal health information

Abstract

Purpose

The purpose of this research is to propose and empirically validate a theoretical framework to investigate the willingness of the elderly to disclose personal health information (PHI) to improve the operational efficiency of AI-integrated caregiver robots.

Design/methodology/approach

Drawing upon Privacy Calculus Theory (PCT) and the Technology Acceptance Model (TAM), 274 usable responses were collected through an online survey.

Findings

Empirical results reveal that trust, privacy concerns, and social isolation have a direct impact on the willingness to disclose PHI. Perceived ease of use (PEOU), perceived usefulness (PU), social isolation, and recognized benefits significantly influence user trust. Conversely, elderly individuals with pronounced privacy concerns are less inclined to disclose PHI when using AI-enabled caregiver robots.

Practical implications

Given the pressing need for AI-enabled caregiver robots due to the aging population and a decrease in professional human caregivers, understanding factors that influence the elderly's disclosure of PHI can guide design considerations and policymaking.

Originality/value

Considering the increased demand for accurate and comprehensive elder services, this is the first time that information disclosure and AI-enabled caregiver robot technologies have been combined in the field of healthcare management. This study bridges the gap between the necessity for technological improvement in caregiver robots and the importance of transparent operational information by disclosing the elderly's willingness to share PHI.

Open Access
Article
Publication date: 30 June 2020

Asefeh Asemi, Andrea Ko and Mohsen Nowkarizi

This paper reviews literature on the application of intelligent systems in the libraries with a special issue on the ES/AI and Robot. Also, it introduces the potential of…

24503

Abstract

Purpose

This paper reviews literature on the application of intelligent systems in the libraries with a special issue on the ES/AI and Robot. Also, it introduces the potential of libraries to use intelligent systems, especially ES/AI and robots.

Design/methodology/approach

Descriptive and content review methods are applied, and the researchers critically reviewed the articles related to library ESs and robots from Web of Science as a general database and Emerald as a specific database in library and information science from 2007–2017. Four scopes considered to classify the articles as technology, service, user and resource. It is found that published researches on the intelligent systems have contributed to many librarian purposes like library technical services like the organization of information resources, storage and retrieval of information resources, library public services as reference services, information desk and other purposes.

Findings

A review of the previous studies shows that ESs are a useable intelligent system in library and information science that mimic librarian expert’s behaviors to support decision making and management. Also, it is shown that the current information systems have a high potential to be improved by integration with AI technologies. In this researches, librarian robots mostly designed for detection and replacing books on the shelf. Improving the technology of gripping, localizing and human-robot interaction are the main concern in recent librarian robot research. Our conclusion is that we need to develop research in the area of smart resources.

Originality/value

This study has a new approach to the literature review in this area. We compared the published papers in the field of ES/AI and robot and library from two databases, general and specific.

Article
Publication date: 3 May 2016

Dilip Kumar Sen, Saurav Datta and S.S. Mahapatra

Robot selection is basically a task of choosing appropriate robot among available alternatives with respect to some evaluation criteria. The task becomes much more complicated…

Abstract

Purpose

Robot selection is basically a task of choosing appropriate robot among available alternatives with respect to some evaluation criteria. The task becomes much more complicated since apart from objective criteria a number of subjective criteria need to be evaluated simultaneously. Plenty of decision support systems have been well documented in existing literature which considers either objective or subjective data set; however, decision support module with simultaneous consideration of objective as well as subjective data has rarely been attempted before. The paper aims to discuss these issues.

Design/methodology/approach

Motivated by this, present work exhibits application potential of preference ranking organization method for enrichment evaluations (extended to operate under fuzzy environment) to solve decision-making problems which encounter both objective as well as subjective evaluation data.

Findings

An empirical case study has been demonstrated in the context of robot selection problem. Finally, a sensitivity analysis has been performed to make the robot selection process more robust. A trade-off between objective criteria measure and subjective criteria measure has been shown using sensitivity analysis.

Originality/value

Robot selection has long been viewed as an important decision-making scenario in the industrial context. Appropriate robot selection helps in enhancing value of the product and thereby, results in increased profitability for the manufacturing industries. The proposed decision support system considering simultaneous exploration of subjective as well as objective database is rarely attempted before.

Details

Benchmarking: An International Journal, vol. 23 no. 4
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 21 March 2016

Fayong Guo, Tao Mei, Minzhou Luo, Marco Ceccarelli, Ziyi Zhao, Tao Li and Jianghai Zhao

Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of…

Abstract

Purpose

Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of humanoid robots stepping over or on/off one obstacle statically or dynamically. As an extreme case, this paper aims to demonstrate how the robots can step over two large obstacles continuously.

Design/methodology/approach

The robot model uses linear inverted pendulum (LIP) model. The motion planning procedure includes feasibility analysis with constraints, footprints planning, legs trajectory planning with collision-free constraint, foot trajectory adapter and upper body motion planning.

Findings

The motion planning with the motion constraints is a key problem, which can be considered as global optimization issue with collision-free constraint, kinematic limits and balance constraint. With the given obstacles, the robot first needs to determine whether it can achieve stepping over, if feasible, and then the robot gets the motion trajectory for the legs, waist and upper body using consecutive obstacles stepping over planning algorithm which is presented in this paper.

Originality/value

The consecutive stepping over problem is proposed in this paper. First, the paper defines two consecutive stepping over conditions, sparse stepping over (SSO) and tight stepping over (TSO). Then, a novel feasibility analysis method with condition (SSO/TSO) decision criterion is proposed for consecutive obstacles stepping over. The feasibility analysis method’s output is walking parameters with obstacles’ information. Furthermore, a modified legs trajectory planning method with center of mass trajectory compensation using upper body motion is proposed. Finally, simulations and experiments for SSO and TSO are carried out by using the XT-I humanoid robot platform with the aim to verify the validity and feasibility of the novel methods proposed in this paper.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 August 2022

Shivam Gupta, Sachin Modgil, Choong-Ki Lee, Minsook Cho and Yaena Park

The hospitality industry has witnessed numerous changes to enhance the stay experience of guests. To offer a memorable stay experience, the industry has started deploying…

1750

Abstract

Purpose

The hospitality industry has witnessed numerous changes to enhance the stay experience of guests. To offer a memorable stay experience, the industry has started deploying intelligent robots. Therefore, this case study aims to examine and explore artificial intelligence (AI) enabled robots in hospitality industry in order to enhance guest experience in a smart city.

Design/methodology/approach

Semistructured interviews have been conducted at Novotel Ambassador Seoul Dongdaemun Hotels and Residences, Seoul, South Korea, to understand the stay experience of guests regarding services offered by AI enabled robots. The authors have selected employees for interviews since employees listen and witness the guest experience directly. Out of 214 employees in the hotel with varied experience and background, 26 interviews are conducted.

Findings

Through a systematic approach of coding, the authors have identified that deploying AI enabled robots facilitates the automation, information gathering, personalization and seamless service in the hospitality industry of a smart city. Further, with a back-and-forth mapping mechanism based on epistemological principles, the authors made four propositions that lead to the development of a research framework.

Research limitations/implications

The practicing managers of hospitality industry can employ AI enabled robots within the scope of improving and automating the processes that can also offer increased personalization to enhance the stay experience, which is expected in a smart city.

Originality/value

The study offers a unique contribution to literature, since it is a live case study, and the information is from the practicing employees of a well-known organization in a hospitality sector from a smart city (Novotel Ambassador Seoul Dongdaemun Hotels and Residences, Seoul, South Korea).

Details

Industrial Management & Data Systems, vol. 122 no. 10
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 29 September 2023

Ata Jahangir Moshayedi, Nafiz Md Imtiaz Uddin, Xiaohong Zhang and Mehran Emadi Andani

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life…

Abstract

Purpose

This paper aims to explore and review the potential of robotic rehabilitation as a treatment approach for Alzheimer’s disease (AD) and its impact on the health and quality of life of AD patients.

Design/methodology/approach

The present discourse endeavors to provide a comprehensive overview of extant scholarly inquiries that have examined the salience of inhibitory mechanisms vis-à-vis robotic interventions and their impact on patients with AD. Specifically, this review aims to explicate the contemporary state of affairs in this realm by furnishing a detailed explication of ongoing research endeavors. With the objective of elucidating the significance of inhibitory processes in robotic therapies for individuals with AD, this analysis offers a critical appraisal of extant literature that probes the intersection of cognitive mechanisms and assistive technologies. Through a meticulous analysis of diverse scholarly contributions, this review advances a nuanced understanding of the intricate interplay between inhibitory processes and robotic interventions in the context of AD.

Findings

According to the review papers, it appears that implementing robot-assisted rehabilitation can serve as a pragmatic and effective solution for enhancing the well-being and overall quality of life of patients and families engaged with AD. Besides, this new feature in the robotic area is anticipated to have a critical role in the success of this innovative approach.

Research limitations/implications

Due to the nascent nature of this cutting-edge technology and the constrained configuration of the mechanized entity in question, further protracted analysis is imperative to ascertain the advantages and drawbacks of robotic rehabilitation vis-à-vis individuals afflicted with Alzheimer’s ailment.

Social implications

The potential for robots to serve as indispensable assets in the provision of care for individuals afflicted with AD is significant; however, their efficacy and appropriateness for utilization by caregivers of AD patients must be subjected to further rigorous scrutiny.

Originality/value

This paper reviews the current robotic method and compares the current state of the art for the AD patient.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of over 10000