Search results

1 – 10 of 39
Article
Publication date: 24 October 2022

Lami Amanuel Erana

The purpose of this research is to develop an environmentally friendly antimicrobial dyeing of cotton fabric from the root of Euclea racemosa. Textile phytochemical finishing is…

46

Abstract

Purpose

The purpose of this research is to develop an environmentally friendly antimicrobial dyeing of cotton fabric from the root of Euclea racemosa. Textile phytochemical finishing is in high demand worldwide because of its low toxicity, low pollution, ease of availability, renewability, pharmacological effects and non-carcinogenic properties, as well as its multifunctionality, rapid process stages and potential health benefit.

Design/methodology/approach

The cotton fabric was dyed with aqueous extracts of Euclea racemosa root dyes. Dyes were extracted for 20 min at pH 7.43 at room and boiling temperatures with material-to-liquor ratios (MLRs) of 1:5, 1:10, 1:15 and 1:20, altering one variable at a time, and the cotton fabric was colored using a post-mordanting procedure at 50°C with an MLR of 1:20. Using a properly cleaned Petri plate, the colored samples were tested in vitro for antibacterial activity. A spectrophotometer was used to assess color strength and shade depth, as well as wash fastness and annual rubbing fastness tests for both wet and dry.

Findings

L* = 36.29, a* = 58.56, b* = 32.46 and K/S = 0.51 were the CIELAB values for dye extracted at boiling temperature. L* = 47.14, a* = 42.23, b* = 49.61 and K/S = 0.38 were the CIELAB values for dye extracted at room temperature. The wash and rubbing fastness of the dyed samples were outstanding and the dyed cotton fabrics were found antibacterial against Gram-negative bacteria Escherichia coli.

Originality/value

Dyes derived from the E. racemosa root could be used to develop a new antibacterial cotton fabric dye.

Details

Research Journal of Textile and Apparel, vol. 28 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 10 September 2024

Ceren Mutlu, Zeynep Demir, Aysun Özkan and Mustafa Erbaş

This study aimed to evaluate the compositional changes and bioaccessibility of phenolics and antioxidants in propolis during in vitro digestion as well as the cytotoxic effects of…

Abstract

Purpose

This study aimed to evaluate the compositional changes and bioaccessibility of phenolics and antioxidants in propolis during in vitro digestion as well as the cytotoxic effects of digested propolis on various cancer cell lines.

Design/methodology/approach

Six propolis samples were obtained and subjected to in vitro oral, gastric and intestinal digestion. Both digested and undigested samples were analyzed for their total phenolic, flavonoid and antioxidant activities. Additionally, changes in phenolic composition in the in vitro digestion system were revealed by the HPLC-DAD system. The cytotoxic effects of the digested samples were assessed on lung (A549, H1299), skin (A431), liver (Hep-G2) and colon (Caco-2) cancer cells as well as on fibroblast (Bj) cells.

Findings

The mean bioaccessibility values of phenolic and flavonoid compounds were found to be less than 35 and 24%, respectively, while the TEAC and CUPRAC antioxidant results ranged between 225.08–649.04 and 398.68–1552.28 µmol TE/g, respectively. The release of p-coumaric, ferulic, 3,4-dimethoxycinnamic acids, naringenin, pinocembrin and chrysin increased progressively from the oral to the intestinal stage. The cytotoxic effects of samples on cell lines were ranked, based on IC50 results, as A431 > Hep-G2 > Caco-2 > A549 > H1299 > Bj.

Originality/value

Propolis has been recognized for centuries as a natural remedy, and numerous studies have explored its bioactive components. However, no studies have previously examined the changes in the phenolic compositions of propolis samples during digestion or their cytotoxic effects on cancer cells. Therefore, this study provides novel insights and an approach to the existing literature on this topic.

Graphical abstract

Details

British Food Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 11 July 2024

Anand Kumar Pandey and Shalja Verma

Millets are underused crops that have the potential to withstand harsh environmental conditions. Recent research has proved immense nutritional benefits associated with millets…

Abstract

Purpose

Millets are underused crops that have the potential to withstand harsh environmental conditions. Recent research has proved immense nutritional benefits associated with millets which have increased their utilization to some extent but yet their sole potential is left to be exploited. Different millet varieties have exceptional nutritional and nutraceutical properties which can ameliorate even the deadly conditions of cancers. They have significant protein composition ranging from 10% to 12% which possess effective bioactive potential. Protein hydrolysates containing bioactive peptides have been evaluated for their therapeutic effects against a variety of diseases. This review aims to discuss the bioactive potential of different millet protein hydrolysates to encourage research for development of effective natural therapeutics.

Design/methodology/approach

The present article elaborates on effective studies on the therapeutic effects of millet protein hydrolysates.

Findings

Several effective millet peptides have been reported for their therapeutic effect against different diseases and their antioxidant, anti-inflammatory, anticancer, antimicrobial and antidiabetic effects have been investigated.

Originality/value

This review focuses on millet bioactive peptides and their significance in treating variety of diseases. Thus, will further encourage research to explore the novel therapeutic effects of millet proteins hydrolysates which can eventually result in the development of natural and safe therapeutics.

Details

Nutrition & Food Science , vol. 54 no. 6
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 5 June 2024

Francisco Javier Rojas-Macedo, Bernardo Teutle-Coyotecatl, Rosalía Contreras-Bulnes, Laura Emma Rodríguez-Vilchis, Eric Reyes-Cervantes and Ulises Velazquez-Enriquez

This paper aims to compare the surface roughness and hardness of three commercially available self-curing acrylic resins for dental use, under different polymerization conditions.

Abstract

Purpose

This paper aims to compare the surface roughness and hardness of three commercially available self-curing acrylic resins for dental use, under different polymerization conditions.

Design/methodology/approach

A comparative in vitro study was conducted using a convenience sample of 12 × 5 × 2 mm blocks with n = 40 for each material (Nic Tone, Arias Plus and Orthocryl®), with subgroups according to the polymerization method: conventional (C) and polymerization under ambient conditions (A). The surface roughness of the materials was measured using a profilometer; hardness was measured with a portable hardness tester. Additionally, surface morphology as well as particles size and morphology were evaluated with scanning electron microscopy.

Findings

There were significant differences in roughness and hardness values between the three self-curing acrylic resins (p < 0.05), as well as within each self-curing acrylic resin according to the polymerization method used (p < 0.05). The samples polymerized with the conventional method presented lower surface roughness and hardness values.

Originality/value

This study provides scientific evidence of values not provided by manufacturers in relation to the surface roughness and hardness of these materials, and all of them met the ideal minimum values of surface roughness, regardless of the polymerization technique used.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 July 2024

Ardvin Kester S. Ong, Raphael Sebastian L. Arriola, Zhyra Michaella R. Eneria, Lerryzel G. Lopez, Erela Agatha L. Matias, John Francis T. Diaz, Josephine D. German and Ma. Janice J. Gumasing

The acceptance and perception of people regarding 3D bioprinted meat are considered as primary concerns but have not been widely evaluated. This study aimed to determine how…

Abstract

Purpose

The acceptance and perception of people regarding 3D bioprinted meat are considered as primary concerns but have not been widely evaluated. This study aimed to determine how biospheric, altruistic, egoistic, ecological worldviews, awareness of consequences, social norms and personal norms affect the consumption intention of 3D bioprinted meat as a future food source.

Design/methodology/approach

The values-beliefs-norms theory grounded this study. An online survey was conducted with 600 valid respondents for analysis utilizing the structural equation modeling method.

Findings

It was found that the ecological worldview had the highest significance, and biospheric and egoistic values positively impacted individuals’ ecological worldview. The awareness of consequences and social norms was also seen to directly influence personal norms, leading to consumption intention. However, it was determined that altruistic values toward an ecological worldview had no significant effect, as an individual's moral values are not affected by other people's well-being.

Practical implications

This study was able to assess and discover the positive consumption intention among Filipinos, highlighting societal norms and pro-environmental behavior. The findings may help manufacturers market 3D bioprinted meat effectively and aid studies on environmentalism, social movements and consumer behavior, leading to acceptance of the development and proliferation of cultured meats.

Originality/value

There have been no studies on cultured meats such as 3D bioprinted meat in the Philippines. The current study was able to fully assess the pro-environmental behavior among Filipinos and intention for 3D bioprinted meat against the generic behavioral assessment among related studies. Comparison was presented based on the findings.

Details

British Food Journal, vol. 126 no. 9
Type: Research Article
ISSN: 0007-070X

Keywords

Abstract

Details

Exploring Hope: Case Studies of Innovation, Change and Development in the Global South
Type: Book
ISBN: 978-1-83549-736-4

Open Access
Article
Publication date: 13 May 2024

Olivia McDermott and Breda Kearney

The European Union (EU) Medical Device Regulations (MDR) 2017/745 entered into force on May 2021 with changes related to strengthening the clinical evaluation requirements…

Abstract

Purpose

The European Union (EU) Medical Device Regulations (MDR) 2017/745 entered into force on May 2021 with changes related to strengthening the clinical evaluation requirements, particularly for high-risk devices. This study aims to investigate the impact of these strengthened requirements on medical device manufacturers by investigating the challenges they encounter while generating an MDR-compliant clinical evaluation report.

Design/methodology/approach

A systematic literature review was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses method of peer-reviewed literature and various government jurisdictional reports and legislation.

Findings

The findings from the study understanding what constitutes sufficient clinical evidence poses the biggest challenge to the generation of an MDR-compliant clinical evaluation report. Resulting from the challenges they are facing, manufacturers of certain CE-marked medical devices are planning to remove (and have removed) devices from the EU market upon expiration of their certificate, and in the case of new and innovative devices, some manufacturers are planning to launch in other markets ahead of the EU. These challenges will lead to a potential shortage of certain medical devices in the EU and a delay in access to new devices, thereby negatively impacting patients’ quality of life.

Practical implications

This study provides a unique insight into the challenges currently experienced by medical device manufacturers as they transition to the MDR clinical evaluation requirements and the subsequent impact on the continued availability of medical devices in the EU. A limitation is the lack of literature analysing the regulations and their effects.

Originality/value

This study has both theoretical contributions in that, to the best of the authors’ knowledge, it is the first detailed and systematic review of the new MDR Regulations and has implications for practice as manufacturers and policymakers can leverage it alike to understand the challenges of the new MDR.

Details

International Journal of Pharmaceutical and Healthcare Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6123

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 April 2024

Abhishek Barwar, Prateek Kala and Rupinder Singh

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery…

Abstract

Purpose

Some studies have been reported in the past on diaphragmatic hernia (DH) surgery techniques using additive manufacturing (AM) technologies, symptoms of a hernia and post-surgery complications. But hitherto little has been reported on bibliographic analysis (BA) for health monitoring of bovine post-DH surgery for long-term management. Based on BA, this study aims to explore the sensor fabrication integrated with innovative AM technologies for health monitoring assistance of bovines post-DH surgery.

Design/methodology/approach

A BA based on the data extracted through the Web of Science database was performed using bibliometric tools (R-Studio and Biblioshiny).

Findings

After going through the BA and a case study, this review provides information on various 3D-printed meshes used over the sutured site and available Internet of Things-based solutions to prevent the recurrence of DH.

Originality/value

Research gaps exist for 3D-printed conformal sensors for health monitoring of bovine post-DH surgery.

Details

Rapid Prototyping Journal, vol. 30 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 August 2024

Iman Ghaderi, Amir Hossein Behravesh, Seyyed Kaveh Hedayati, Seyed Alireza Alavinasab Ardebili, Omid Kordi, Ghaus Rizvi and Khodayar Gholivand

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical…

Abstract

Purpose

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical applications such as addressing mandibular bone loss.

Design/methodology/approach

To enhance both the mechanical and biological properties of scaffolds, an automatic multimaterial setup using vat photopolymerization was developed. This setup features a linear system with two resin vats and one ultrasonic cleaning tank, facilitating the integration of diverse materials and structures to optimize scaffold composition. Such versatility allows for the simultaneous achievement of various characteristics in scaffold design.

Findings

The printed multimaterial scaffolds, featuring 20 Wt.% hydroxylapatite (HA) on the interior and poly-L-lactic acid (PLLA) with 1 Wt.% graphene oxide (GO) on the exterior, exhibited favorable mechanical and biological properties at the optimum postcuring and heat-treatment time. Using an edited triply periodic minimal surface (TPMS) lattice structure further enhanced these properties. Various multimaterial specimens were successfully printed and evaluated, showcasing the capability of the setup to ensure functionality, cleanliness and adequate interface bonding. Additionally, a novel Gyroid TPMS scaffold with a nominal porosity of 50% was developed and experimentally validated.

Originality/value

This study demonstrates the successful fabrication of multimaterial components with minimal contaminations and suitable mechanical and biological properties. By combining PLLA-HA and PLLA-GO, this innovative technique holds significant promise for enhancing the effectiveness of regenerative procedures, particularly in the realm of dentistry.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 39