Search results

1 – 10 of 129
Article
Publication date: 7 February 2020

Mingshun Yang, Li Ba, Erbao Xu, Yan Li, Yong Liu and Xinqin Gao

Assembly is the last step in manufacturing processes. The two-sided assembly line balancing problem (TALBP) is a typical research focus in the field of combinatorial optimization…

Abstract

Purpose

Assembly is the last step in manufacturing processes. The two-sided assembly line balancing problem (TALBP) is a typical research focus in the field of combinatorial optimization. This paper aims to study a multi-constraint TALBP-I (MC-TALBP-I) that involves positional constraints, zoning constraints and synchronism constraints to make TALBP more in line with real production. For enhancing quality of assembly solution, an improved imperialist competitive algorithm (ICA) is designed for solving the problem.

Design/methodology/approach

A mathematical model for minimizing the weighted sum of the number of mated-stations and stations is established. An improved ICA is designed based on a priority value encoding structure for solving MC-TALBP-I.

Findings

The proposed ICA was tested by several benchmarks involving positional constraints, zoning constraints and synchronism constraints. This algorithm was compared with the late acceptance hill-climbing (LAHC) algorithm in several instances. The results demonstrated that the ICA provides much better performance than the LAHC algorithm.

Practical implications

The best solution obtained by solving MC-TALBP-I is more feasible for determining the real assembly solution than the best solution obtained by solving based TALBP-I only.

Originality/value

A novel ICA based on priority value encoding is proposed in this paper. Initial countries are generated by a heuristic method. An imperialist development strategy is designed to improve the qualities of countries. The effectiveness of the ICA is indicated through a set of benchmarks.

Article
Publication date: 30 December 2021

Mohammad Hossein Saraei, Ayyoob Sharifi and Mohsen Adeli

The purpose of this study is to optimize the location of hospitals in Gorgan, Iran, to provide desirable services to citizens in the event of an earthquake crisis.

Abstract

Purpose

The purpose of this study is to optimize the location of hospitals in Gorgan, Iran, to provide desirable services to citizens in the event of an earthquake crisis.

Design/methodology/approach

This paper, due to target, is practical and developmental, due to doing method is descriptive and analytical and due to information gathering method is documental and surveying. In the present study, the capabilities of genetic algorithms and imperialist competition algorithm in MATLAB environment in combination with GIS capabilities have been used. In fact, cases such as route blocking, network analysis and vulnerability raster have been obtained from GIS-based on current status data, and then the output of this information is entered as non-random heuristic information into genetic algorithms and imperialist competition algorithm in MATLAB environment.

Findings

After spatial optimization, the hospital service process has become more favorable. Also, the average cost and transfer vector from hospitals to citizens has decreased significantly. By establishing hospitals in the proposed locations, a larger population of citizens can access relief services in less time.

Originality/value

Spatial optimization of relief centers, including hospitals, is one of the issues that can be of significant importance, especially in the event of an earthquake crisis. The findings of the present study and the originality, efficiency and innovation of the used methods can provide a favorable theoretical framework for the success of earthquake crisis management projects.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 3
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 17 September 2020

Beikun Zhang and Liyun Xu

The increasing energy shortage leads to worldwide attentions. This paper aims to develop a mathematical model and optimization algorithm to solve the energy-oriented U-shaped…

Abstract

Purpose

The increasing energy shortage leads to worldwide attentions. This paper aims to develop a mathematical model and optimization algorithm to solve the energy-oriented U-shaped assembly line balancing problem. Different from most existing works, the energy consumption is set as a major objective.

Design/methodology/approach

An improved flower pollination algorithm (IFPA) is designed to solve the problem. The random key encoding mechanism is used to map the continuous algorithm into discrete problem. The pollination rules are modified to enhance the information exchange between individuals. Variable neighborhood search (VNS) is used to improve the algorithm performance.

Findings

The experimental results show that the two objectives are in conflict with each other. The proposed methodology can help manager obtain the counterbalance between them, for the larger size balancing problems, and the reduction in objectives is even more significant. Besides, the experiment results also show the high efficiency of the proposed IFPA and VNS.

Originality/value

The main contributions of this work are twofold. First, a mathematical model for the U-shaped assembly line balancing problem is developed and the model is dual foci including minimized SI and energy consumption. Second, an IFPA is proposed to solve the problem.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 August 2021

Samane Babaeimorad, Parviz Fattahi and Hamed Fazlollahtabar

The purpose of this paper is to present an integrated strategy for inventory control and preventive maintenance planning for a single-machine production system with increasing…

Abstract

Purpose

The purpose of this paper is to present an integrated strategy for inventory control and preventive maintenance planning for a single-machine production system with increasing failure rates.

Design/methodology/approach

There are three scenarios for solving presented model. The strategy is such that the production component is placed under maintenance as soon as it reaches the m level or in the event of a malfunction earlier than m. Maintenance completion time is not predictable. As a result of periodic maintenance, a buffer stock h is held and the production component starts to produce from period A with the maximum throughput to satisfy demand and handle the shortage. A numerical algorithm to find the optimal policy is developed. The algorithm is implemented using MATLAB software.

Findings

The authors discovered that joint optimization mainly reduces production system costs. Cs is holding cost of a product unit during a unit of time. The authors consider two values for Cs, consist of, Cs = 1 and Cs = 2. By comparing the two cases, it is concluded that by reducing the cost from Cs = 2 to Cs = 1, the optimal scenario does not differ. The amount of decision variables decreases.

Originality/value

This paper is the provision of a model in which the shortage of back order type is considered, which greatly increases the complexity of the problem compared to similar issues. The methods for solving such problems are provided by the numerical algorithm, and the use of buffers as a way to compensate for the shortage in the event of a complete shutdown of the production line which is a very effective and efficient way to deal with customer loss.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 18 August 2022

Adalberto Sato Michels and Alysson M. Costa

Resource-constrained assembly lines are widely found in industries that manufacture complex products. In such lines, tasks may require specific resources to be processed…

Abstract

Purpose

Resource-constrained assembly lines are widely found in industries that manufacture complex products. In such lines, tasks may require specific resources to be processed. Therefore, decisions on which tasks and resources will be assigned to each station must be made. When the number of available stations is fixed, the problem’s main goal becomes the minimisation of cycle time (type-II version). This paper aims to explore this variant of the problem that lacks investigation in the literature.

Design/methodology/approach

In this paper, the authors propose mixed-integer linear programming (MILP) models to minimise cycle time in resource-constrained assembly lines, given a limited number of stations and resources. Dedicated and alternative resource types for tasks are considered in different scenarios.

Findings

Besides, past modelling decisions and assumptions are questioned. The authors discuss how they were leading to suboptimal solutions and offer a rectification.

Practical implications

The proposed models and data set fulfil more practical concerns by taking into account characteristics found in real-world assembly lines.

Originality/value

The proposed MILP models are applied to an existing data set, results are compared against a constraint programming model, and new optimal solutions are obtained. Moreover, a data set extension is proposed due to the simplicity of the current one and instances up to 70 tasks are optimally solved.

Details

Assembly Automation, vol. 42 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 August 2021

Hui Zhang, Xiyang Li, Za Kan, Xiaohai Zhang and Zhiyong Li

Reducing production auxiliary time is the key to improve the efficiency of the existing mixed-flow assembly line. This paper proposes a method combining improved genetic algorithm

Abstract

Purpose

Reducing production auxiliary time is the key to improve the efficiency of the existing mixed-flow assembly line. This paper proposes a method combining improved genetic algorithm (GA) and Flexsim software. It also investigates mixed-flow assembly line scheduling and just-in-time (JIT) parts feeding scheme to reduce waste in production while taking the existing hill-drop mixed-flow assembly line as an example to verify the effectiveness of the method.

Design/methodology/approach

In this research, a method is presented to optimize the efficiency of the present assembly line. The multi-objective mathematical model is established based on the objective function of the minimum production cycle and part consumption balance, and the solution model is developed using multi-objective GA to obtain the mixed flow scheduling scheme of the hill-drop planter. Furthermore, modeling and simulation with Flexsim software are investigated along with the contents of line inventory, parts transportation means, daily feeding times and time points.

Findings

Theoretical analysis and simulation experiments are carried out in this paper while taking an example of a hill-drop planter mixed-flow assembly line. The results indicate that the method can effectively reduce the idle and overload of the assembly line, use the transportation resources rationally and decrease the accumulation of the line inventory.

Originality/value

The method of combining improved GA and Flexsim software was used here for the first time intuitively and efficiently to study the balance of existing production lines and JIT feeding of parts. Investigating the production scheduling scheme provides a reference for the enterprise production line accompanied by the quantity allocation of transportation tools, the inventory consumption of the spare parts along the line and the utilization rate of each station to reduce the auxiliary time and apply practically.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 31 August 2021

Ibrahim Al-Shourbaji and Waleed Zogaan

The human resource (HR) allocation problem is one of the critical dimensions of the project management process. Due to this nature of the problem, researchers are continually…

Abstract

Purpose

The human resource (HR) allocation problem is one of the critical dimensions of the project management process. Due to this nature of the problem, researchers are continually optimizing one or more critical scheduling and allocation challenges in different ways. This study aims to optimize two goals, increasing customer satisfaction and reducing costs using the imperialist competitive algorithm.

Design/methodology/approach

Cloud-based e-commerce applications are preferred to conventional systems because they can save money in many areas, including resource use, running expenses, capital costs, maintenance and operation costs. In web applications, its core functionality of performance enhancement and automated device recovery is important. HR knowledge, expertise and competencies are becoming increasingly valuable carriers for organizational competitive advantage. As a result, HR management is becoming more relevant, as it seeks to channel all of the workers’ energy into meeting the organizational strategic objectives. The allocation of resources to maximize benefit or minimize cost is known as the resource allocation problem. Since discovering solutions in polynomial time is complicated, HR allocation in cloud-based e-commerce is an Nondeterministic Polynomial time (NP)-hard problem. In this paper, to promote the respective strengths and minimize the weaknesses, the imperialist competitive algorithm is suggested to solve these issues. The imperialist competitive algorithm is tested by comparing it to the literature’s novel algorithms using a simulation.

Findings

Empirical outcomes have illustrated that the suggested hybrid method achieves higher performance in discovering the appropriate HR allocation than some modern techniques.

Practical implications

The paper presents a useful method for improving HR allocation methods. The MATLAB-based simulation results have indicated that costs and waiting time have been improved compared to other algorithms, which cause the high application of this method in practical projects.

Originality/value

The main novelty of this paper is using an imperialist competitive algorithm for finding the best solution to the HR allocation problem in cloud-based e-commerce.

Details

Kybernetes, vol. 51 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 October 2022

Tolga Çimen, Adil Baykasoğlu and Sebnem Demirkol Akyol

Various approaches and algorithms have been proposed since the 1950s to solve the assembly line (AL) balancing problem. These methods have established an AL configuration from the…

Abstract

Purpose

Various approaches and algorithms have been proposed since the 1950s to solve the assembly line (AL) balancing problem. These methods have established an AL configuration from the beginning. However, a prebalanced AL may have to be rebalanced in real life for many reasons, such as changes in the cycle time, production demand, product features or task operation times. This problem has increasingly attracted the interest of scientists in recent years. This study aims to offer a detailed review of the assembly line rebalancing problems (ALRBPs) to provide a better insight into the theoretical and practical applications of ALRBPs.

Design/methodology/approach

A structured database search was conducted, and 41 ALRBP papers published between 2005 and 2022 were classified based on the problem structure, objective functions, problem constraints, reasons for rebalancing, solution approaches and type of data used for solution evaluation. Finally, future research directions were identified and recommended.

Findings

Single model, straight lines with deterministic task times were the most studied type of the ALRBPs. Eighteen percent of the studies solved worker assignment problems together with ALRBP. Product demand and cycle time changes were the leading causes of the rebalancing need. Furthermore, seven future research opportunities were suggested.

Originality/value

Although there are many review studies on AL balancing problems, to the best of the authors’ knowledge, there have been no attempts to review the studies on ALRBPs.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 3 June 2014

Mahsan Esmaeilzadeh Tarei, Bijan Abdollahi and Mohammad Nakhaei

The purpose of this paper is to describe imperialist competitive algorithm (ICA), a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this…

Abstract

Purpose

The purpose of this paper is to describe imperialist competitive algorithm (ICA), a novel socio-politically inspired optimization strategy for proposing a fuzzy variant of this algorithm. ICA is a meta-heuristic algorithm for dealing with different optimization tasks. The basis of the algorithm is inspired by imperialistic competition. It attempts to present the social policy of imperialisms (referred to empires) to control more countries (referred to colonies) and use their sources. If one empire loses its power, among the others making a competition to take possession of it.

Design/methodology/approach

In fuzzy imperialist competitive algorithm (FICA), the colonies have a degree of belonging to their imperialists and the top imperialist, as in fuzzy logic, rather than belonging completely to just one empire therefore the colonies move toward the superior empire and their relevant empires. Simultaneously for balancing the exploration and exploitation abilities of the ICA. The algorithms are used for optimization have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures. FICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing fuzzy logic on it.

Findings

Therefore several solution procedures, including ICA, FICA, genetic algorithm, particle swarm optimization, tabu search and simulated annealing optimization algorithm are considered. Finally numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures. Test results present the suitability of the proposed fuzzy ICA for convex functions with little fluctuations.

Originality/value

The proposed evolutionary algorithm, FICA, can be used in diverse areas of optimization problems where convex functions properties are appeared including, industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning (optimization techniques; fuzzy logic; convex functions).

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 25 November 2013

Mahsan Esmaeilzadeh

– This article is going to introduce a modified variant of the imperialist competitive algorithm (ICA). The paper aims to discuss these issues.

Abstract

Purpose

This article is going to introduce a modified variant of the imperialist competitive algorithm (ICA). The paper aims to discuss these issues.

Design/methodology/approach

ICA is a meta-heuristic algorithm that is introduced based on a socio-politically motivated global search strategy. It is a population-based stochastic algorithm to control more countries. The most powerful countries are imperialists and the weakest countries are colonies. Colonies movement toward their relevant imperialist, and making a competition among all empires to posses the weakest colonies of the weakest empires, form the basis of the ICA. This fact that the imperialists also need to model and they move towards top imperialist state is the most common type of political rules from around the world. This paper exploits these new ideas. The modification is the empire movement toward the superior empire for balancing the exploration and exploitation abilities of the ICA.

Findings

The algorithms are used for optimization that have shortcoming to deal with accuracy rate and local optimum trap and they need complex tuning procedures. MICA is proposed a way for optimizing convex function with high accuracy and avoiding to trap in local optima rather than using original ICA algorithm by implementing some modification on it.

Originality/value

Therefore, several solution procedures, including ICA, modified ICA, and genetic algorithm and particle swarm optimization algorithm are proposed. Finally, numerical experiments are carried out to evaluate the effectiveness of models as well as solution procedures. Test results present the suitability of the proposed modified ICA for convex functions with little fluctuations.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 6 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 129