Search results

1 – 10 of 967
Article
Publication date: 20 December 2019

Ashish Yadav, Ramawatar Kulhary, Rupesh Nishad and Sunil Agrawal

Parallel two-sided assembly lines are usually designed to produce large-sized products such as trucks and buses. In parallel two-sided assembly lines, both left and right sides of…

Abstract

Purpose

Parallel two-sided assembly lines are usually designed to produce large-sized products such as trucks and buses. In parallel two-sided assembly lines, both left and right sides of the line are used for manufacturing one or more products on two or more assembly lines located parallel to each other. The purpose of this paper is to develop a new mathematical model for the parallel two-sided assembly line balancing problem that helps to evaluate and validate the balancing operations of the machines such as removal of tools and fixtures and reallocating the operators.

Design/methodology/approach

The proposed approach is explained with the help of an example problem. In all, 22 test problems are formed using the benchmark problems P9, P12, P16 and P24. The results obtained are compared among approaches of the task(s) shared, tool(s) shared and both tool(s) and task(s) shared for effect on efficiency as the performance measure. The solution presented here follows the exact solution procedure that is solved by Lingo 16 solver.

Findings

Based on the experiments, line efficiency decreases when only tools are shared and increases when only tasks are shared. Results indicate that by sharing tasks and tools together, better line efficiency is obtained with less cost of tools and fixtures.

Practical implications

According to the industrial aspect, the result of the study can be beneficial for assembly of the products, where tools and tasks are shared between parallel workstations of two or more parallel lines.

Originality/value

According to the author’s best knowledge, this paper is the first to address the tools and tasks sharing between any pair of parallel workstations.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 15 December 2017

Xiaofeng Hu and Chunaxun Wu

The purpose of this paper is to define new criteria for measuring workload smoothness of two-sided assembly lines and propose an algorithm to solve a two-sided assembly line

Abstract

Purpose

The purpose of this paper is to define new criteria for measuring workload smoothness of two-sided assembly lines and propose an algorithm to solve a two-sided assembly line balancing problem focusing on distributing the idle time and the workload as evenly as possible among the workstations.

Design/methodology/approach

This paper points out that the mean absolute deviation (MAD) and the smoothness index (SI) used to measure the workload smoothing in one-sided assembly lines are both inappropriate to evaluate the workload balance among workstations in two-sided assembly lines, as the idle time occur at the beginning and in the middle of a cycle within workstations. Then, the finish-time-based SI and MAD (FSI and FMAD) are defined, and a heuristic procedure based on the core mechanism of Moodie and Young method is proposed to smooth the assembly workload in two-sided assembly lines.

Findings

The computational results indicate that the proposed heuristic algorithm combined with the FMAD is effective in distributing the idle time and the workload among workstations as evenly as possible in two-sided assembly lines.

Practical implications

The two-sided assembly line balancing problem with the objective of the line efficiency can be effectively solved by the proposed approach.

Originality/value

The FMAD is proposed to effectively improve the workload smoothing in two-sided assembly lines.

Details

Assembly Automation, vol. 38 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 September 2019

Yilmaz Delice

This paper aims to discuss the sequence-dependent forward setup time (FST) and backward setup time (BST) consideration for the first time in two-sided assembly lines

Abstract

Purpose

This paper aims to discuss the sequence-dependent forward setup time (FST) and backward setup time (BST) consideration for the first time in two-sided assembly lines. Sequence-dependent FST and BST values must be considered to compute all of the operational times of each station. Thus, more realistic results can be obtained for real-life situations with this new two-sided assembly line balancing (ALB) problem with setups consideration. The goal is to obtain the most suitable solution with the least number of mated stations and total stations.

Design/methodology/approach

The complex structure it possesses has led to the use of certain assumptions in most of the studies in the ALB literature. In many of them, setup times have been neglected or considered superficially. In the real-life assembly process, potential setup configurations may exist between each successive task and between each successive cycle. When two tasks are in the same cycle, the setup time required (forward setup) may be different from the setup time required if the same two tasks are in consecutive cycles (backward setup).

Findings

Algorithm steps have been studied in detail on a sample solution. Using the proposed algorithm, the literature test problems are solved and the algorithm efficiency is revealed. The results of the experiments revealed that the proposed approach finds promising results.

Originality/value

The sequence-dependent FST and BST consideration is applied in a two-sided assembly line approach for the first time. A genetic algorithm (GA)-based algorithm with ten different heuristic rules was used in this proposed model.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 August 2019

Mohd Fadzil Faisae Ab. Rashid, Ahmad Nasser Mohd Rose, Nik Mohd Zuki Nik Mohamed and Fadhlur Rahman Mohd Romlay

This paper aims to propose an improved Moth Flame Optimization (I-MFO) algorithm to optimize the cost-oriented two-sided assembly line balancing (2S-ALB). Prior to the decision to…

Abstract

Purpose

This paper aims to propose an improved Moth Flame Optimization (I-MFO) algorithm to optimize the cost-oriented two-sided assembly line balancing (2S-ALB). Prior to the decision to assemble a new product, the manufacturer will carefully study and optimize the related cost to set up and run the assembly line. For the first time in ALB, the power cost is modeled together with the equipment, set up and labor costs.

Design/methodology/approach

I-MFO was proposed by introducing a global reference flame mechanism to guide the global search direction. A set of benchmark problems was used to test the I-MFO performance. Apart from the benchmark problems, a case study from a body shop assembly was also presented.

Findings

The computational experiment indicated that the I-MFO obtained promising results compared to comparison algorithms, which included the particle swarm optimization, Cuckoo Search and ant colony optimization. Meanwhile, the results from the case study showed that the proposed cost-oriented 2S-ALB model was able to assist the manufacturer in making better decisions for different planning periods.

Originality/value

The main contribution of this work is the global reference flame mechanism for MFO algorithm. Furthermore, this research introduced a new cost-oriented model that considered power consumption in the assembly line design.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 February 2020

Mingshun Yang, Li Ba, Erbao Xu, Yan Li, Yong Liu and Xinqin Gao

Assembly is the last step in manufacturing processes. The two-sided assembly line balancing problem (TALBP) is a typical research focus in the field of combinatorial optimization…

Abstract

Purpose

Assembly is the last step in manufacturing processes. The two-sided assembly line balancing problem (TALBP) is a typical research focus in the field of combinatorial optimization. This paper aims to study a multi-constraint TALBP-I (MC-TALBP-I) that involves positional constraints, zoning constraints and synchronism constraints to make TALBP more in line with real production. For enhancing quality of assembly solution, an improved imperialist competitive algorithm (ICA) is designed for solving the problem.

Design/methodology/approach

A mathematical model for minimizing the weighted sum of the number of mated-stations and stations is established. An improved ICA is designed based on a priority value encoding structure for solving MC-TALBP-I.

Findings

The proposed ICA was tested by several benchmarks involving positional constraints, zoning constraints and synchronism constraints. This algorithm was compared with the late acceptance hill-climbing (LAHC) algorithm in several instances. The results demonstrated that the ICA provides much better performance than the LAHC algorithm.

Practical implications

The best solution obtained by solving MC-TALBP-I is more feasible for determining the real assembly solution than the best solution obtained by solving based TALBP-I only.

Originality/value

A novel ICA based on priority value encoding is proposed in this paper. Initial countries are generated by a heuristic method. An imperialist development strategy is designed to improve the qualities of countries. The effectiveness of the ICA is indicated through a set of benchmarks.

Article
Publication date: 16 January 2019

Muhamad Magffierah Razali, Nur Hairunnisa Kamarudin, Mohd Fadzil Faisae Ab. Rashid and Ahmad Nasser Mohd Rose

This paper aims to review and discuss four aspects of mixed-model assembly line balancing (MMALB) problem mainly on the optimization angle. MMALB is a non-deterministic…

Abstract

Purpose

This paper aims to review and discuss four aspects of mixed-model assembly line balancing (MMALB) problem mainly on the optimization angle. MMALB is a non-deterministic polynomial-time hard problem which requires an effective algorithm for solution. This problem has attracted a number of research fields: manufacturing, mathematics and computer science.

Design/methodology/approach

This paper review 59 published research works on MMALB from indexed journal. The review includes MMALB problem varieties, optimization algorithm, objective function and constraints in the problem.

Findings

Based on research trend, this topic is still growing with the highest publication number observed in 2016 and 2017. The review indicated that the future research direction should focus on human factors and sustainable issues in the problem modeling. As the assembly cost becomes crucial, resource utilization in the assembly line should also be considered. Apart from that, the growth of new optimization algorithms is predicted to influence the MMALB optimization, which currently relies on well-established algorithms.

Originality/value

The originality of this paper is on the research trend in MMALB. It provides the future direction for the researchers in this field.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 October 2022

Tolga Çimen, Adil Baykasoğlu and Sebnem Demirkol Akyol

Various approaches and algorithms have been proposed since the 1950s to solve the assembly line (AL) balancing problem. These methods have established an AL configuration from the…

Abstract

Purpose

Various approaches and algorithms have been proposed since the 1950s to solve the assembly line (AL) balancing problem. These methods have established an AL configuration from the beginning. However, a prebalanced AL may have to be rebalanced in real life for many reasons, such as changes in the cycle time, production demand, product features or task operation times. This problem has increasingly attracted the interest of scientists in recent years. This study aims to offer a detailed review of the assembly line rebalancing problems (ALRBPs) to provide a better insight into the theoretical and practical applications of ALRBPs.

Design/methodology/approach

A structured database search was conducted, and 41 ALRBP papers published between 2005 and 2022 were classified based on the problem structure, objective functions, problem constraints, reasons for rebalancing, solution approaches and type of data used for solution evaluation. Finally, future research directions were identified and recommended.

Findings

Single model, straight lines with deterministic task times were the most studied type of the ALRBPs. Eighteen percent of the studies solved worker assignment problems together with ALRBP. Product demand and cycle time changes were the leading causes of the rebalancing need. Furthermore, seven future research opportunities were suggested.

Originality/value

Although there are many review studies on AL balancing problems, to the best of the authors’ knowledge, there have been no attempts to review the studies on ALRBPs.

Details

Assembly Automation, vol. 42 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 September 2020

Beikun Zhang and Liyun Xu

The increasing energy shortage leads to worldwide attentions. This paper aims to develop a mathematical model and optimization algorithm to solve the energy-oriented U-shaped…

Abstract

Purpose

The increasing energy shortage leads to worldwide attentions. This paper aims to develop a mathematical model and optimization algorithm to solve the energy-oriented U-shaped assembly line balancing problem. Different from most existing works, the energy consumption is set as a major objective.

Design/methodology/approach

An improved flower pollination algorithm (IFPA) is designed to solve the problem. The random key encoding mechanism is used to map the continuous algorithm into discrete problem. The pollination rules are modified to enhance the information exchange between individuals. Variable neighborhood search (VNS) is used to improve the algorithm performance.

Findings

The experimental results show that the two objectives are in conflict with each other. The proposed methodology can help manager obtain the counterbalance between them, for the larger size balancing problems, and the reduction in objectives is even more significant. Besides, the experiment results also show the high efficiency of the proposed IFPA and VNS.

Originality/value

The main contributions of this work are twofold. First, a mathematical model for the U-shaped assembly line balancing problem is developed and the model is dual foci including minimized SI and energy consumption. Second, an IFPA is proposed to solve the problem.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 20 April 2023

Mohd Fadzil Faisae Ab. Rashid and Ariff Nijay Ramli

This study aims to propose a new multiobjective optimization metaheuristic based on the tiki-taka algorithm (TTA). The proposed multiobjective TTA (MOTTA) was implemented for a…

Abstract

Purpose

This study aims to propose a new multiobjective optimization metaheuristic based on the tiki-taka algorithm (TTA). The proposed multiobjective TTA (MOTTA) was implemented for a simple assembly line balancing type E (SALB-E), which aimed to minimize the cycle time and workstation number simultaneously.

Design/methodology/approach

TTA is a new metaheuristic inspired by the tiki-taka playing style in a football match. The TTA is previously designed for a single-objective optimization, but this study extends TTA into a multiobjective optimization. The MOTTA mimics the short passing and player movement in tiki-taka to control the game. The algorithm also utilizes unsuccessful ball pass and multiple key players to enhance the exploration. MOTTA was tested against popular CEC09 benchmark functions.

Findings

The computational experiments indicated that MOTTA had better results in 82% of the cases from the CEC09 benchmark functions. In addition, MOTTA successfully found 83.3% of the Pareto optimal solution in the SALB-E optimization and showed tremendous performance in the spread and distribution indicators, which were associated with the multiple key players in the algorithm.

Originality/value

MOTTA exploits the information from all players to move to a new position. The algorithm makes all solution candidates have contributions to the algorithm convergence.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2020

Emre Cevikcan and Mehmet Bulent Durmusoglu

Rabbit chase (RC) is used as one of the most effective techniques in manufacturing systems, as such systems have high level of adaptability and increased productivity in addition…

Abstract

Purpose

Rabbit chase (RC) is used as one of the most effective techniques in manufacturing systems, as such systems have high level of adaptability and increased productivity in addition to providing uniform workload balancing and skill improving environment. In assembly systems, RC inspires the development of walking worker assembly line (WWAL). On the other hand, U-type assembly lines (UALs) may provide higher worker utilization, lower space requirement and more convenient internal logistics when compared to straight assembly lines. In this context, this study aims to improve assembly line performance by generating RC cycles on WWAL with respect to task assignment characteristics of UAL within reasonable walking distance and space requirement. Therefore, a novel line configuration, namely, segmented rabbit chase-oriented U-type assembly line (SRCUAL), emerges.

Design/methodology/approach

The mathematical programming approach treats SRCUAL balancing problem in a hierarchical manner to decrease computational burden. Firstly, segments are generated via the first linear programming model in the solution approach for balancing SRCUALs to minimize total number of workers. Then, stations are determined within each segment for forward and backward sections separately using two different pre-emptive goal programming models. Moreover, three heuristics are developed to provide solution quality with computational efficiency.

Findings

The proposed mathematical programming approach is applied to the light-emitting diode (LED) luminaire assembly section of a manufacturing company. The adaptation of SRCUAL decreased the number of workers by 15.4% and the space requirement by 17.7% for LED luminaire assembly system when compared to UAL. Moreover, satisfactory results for the proposed heuristics were obtained in terms of deviation from lower bound, especially for SRCUAL heuristics I and II. Moreover, the results indicate that the integration of RC not only decreased the number of workers in 40.28% (29 instances) of test problems in U-lines, but also yielded less number of buffer points (48.48%) with lower workload deviation (75%) among workers in terms of coefficient of variation.

Practical implications

This study provides convenience for capacity management (assessing capacity and adjusting capacity by changing the number of workers) for industrial SRCUAL applications. Meanwhile, SRCUAL applications give the opportunity to increase the capacity for a product or transfer the saved capacity to the assembly of other products. As it is possible to provide one-piece flow with equal workloads via walking workers, SRCUAL has the potential for quick realization of defects and better lead time performance.

Originality/value

To the best of the authors’ knowledge, forward–backward task assignments in U-type lines have not been adapted to WWALs. Moreover, as workers travel overall the line in WWALs, walking time increases drastically. Addressing this research gap and limitation, the main innovative aspect of this study can be considered as the proposal of a new line design (i.e. SRCUAL) which is sourced from the hybridization of UALs and WWAL as well as the segmentation of the line with RC cycles. The superiority of SRCUAL over WWAL and UAL was also discussed. Moreover, operating systematic for SRCUAL was devised. As for methodical aspect, this study is the first attempt to solve the balancing problem for SRCUAL design.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 967