Search results

1 – 10 of over 29000
Article
Publication date: 8 July 2021

Lin Zhang, Yingjie Zhang, Manni Zeng and Yangfan Li

The purpose of this paper is to put forward a path planning method in complex environments containing dynamic obstacles, which improves the performance of the traditional A…

Abstract

Purpose

The purpose of this paper is to put forward a path planning method in complex environments containing dynamic obstacles, which improves the performance of the traditional A* algorithm, this method can plan the optimal path in a short running time.

Design/methodology/approach

To plan an optimal path in a complex environment with dynamic and static obstacles, a novel improved A* algorithm is proposed. First, obstacles are identified by GoogLeNet and classified into static obstacles and dynamic obstacles. Second, the ray tracing algorithm is used for static obstacle avoidance, and a dynamic obstacle avoidance waiting rule based on dilate principle is proposed. Third, the proposed improved A* algorithm includes adaptive step size adjustment, evaluation function improvement and path planning with quadratic B-spline smoothing. Finally, the proposed improved A* algorithm is simulated and validated in real-world environments, and it was compared with traditional A* and improved A* algorithms.

Findings

The experimental results show that the proposed improved A* algorithm is optimal and takes less execution time compared with traditional A* and improved A* algorithms in a complex dynamic environment.

Originality/value

This paper presents a waiting rule for dynamic obstacle avoidance based on dilate principle. In addition, the proposed improved A* algorithm includes adaptive step adjustment, evaluation function improvement and path smoothing operation with quadratic B-spline. The experimental results show that the proposed improved A* algorithm can get a shorter path length and less running time.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 22 August 2022

Qingxia Li, Xiaohua Zeng and Wenhong Wei

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective…

Abstract

Purpose

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Design/methodology/approach

In this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.

Findings

In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.

Originality/value

In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 8 October 2018

Atul Mishra and Sankha Deb

Assembly sequence optimization is a difficult combinatorial optimization problem having to simultaneously satisfy various feasibility constraints and optimization criteria…

Abstract

Purpose

Assembly sequence optimization is a difficult combinatorial optimization problem having to simultaneously satisfy various feasibility constraints and optimization criteria. Applications of evolutionary algorithms have shown a lot of promise in terms of lower computational cost and time. But there remain challenges like achieving global optimum in least number of iterations with fast convergence speed, robustness/consistency in finding global optimum, etc. With the above challenges in mind, this study aims to propose an improved flower pollination algorithm (FPA) and hybrid genetic algorithm (GA)-FPA.

Design/methodology/approach

In view of slower convergence rate and more computational time required by the previous discrete FPA, this paper presents an improved hybrid FPA with different representation scheme, initial population generation strategy and modifications in local and global pollination rules. Different optimization objectives are considered like direction changes, tool changes, assembly stability, base component location and feasibility. The parameter settings of hybrid GA-FPA are also discussed.

Findings

The results, when compared with previous discrete FPA and GA, memetic algorithm (MA), harmony search and improved FPA (IFPA), the proposed hybrid GA-FPA gives promising results with respect to higher global best fitness and higher average fitness, faster convergence (especially from the previously developed variant of FPA) and most importantly improved robustness/consistency in generating global optimum solutions.

Practical implications

It is anticipated that using the proposed approach, assembly sequence planning can be accomplished efficiently and consistently with reduced lead time for process planning, making it cost-effective for industrial applications.

Originality/value

Different representation schemes, initial population generation strategy and modifications in local and global pollination rules are introduced in the IFPA. Moreover, hybridization with GA is proposed to improve convergence speed and robustness/consistency in finding globally optimal solutions.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 March 2017

Yan Guo, Minxi Wang and Xin Li

The purpose of this paper is to make the mobile e-commerce shopping more convenient and avoid information overload by a mobile e-commerce recommendation system using an improved…

3396

Abstract

Purpose

The purpose of this paper is to make the mobile e-commerce shopping more convenient and avoid information overload by a mobile e-commerce recommendation system using an improved Apriori algorithm.

Design/methodology/approach

Combined with the characteristics of the mobile e-commerce, an improved Apriori algorithm was proposed and applied to the recommendation system. This paper makes products that are recommended to consumers valuable by improving the data mining efficiency. Finally, a Taobao online dress shop is used as an example to prove the effectiveness of an improved Apriori algorithm in the mobile e-commerce recommendation system.

Findings

The results of the experimental study clearly show that the mobile e-commerce recommendation system based on an improved Apriori algorithm increases the efficiency of data mining to achieve the unity of real time and recommendation accuracy.

Originality/value

The improved Apriori algorithm is applied in the mobile e-commerce recommendation system solving the limitation of the visual interface in a mobile terminal and the mass data that are continuously generated. The proposed recommendation system provides greater prediction accuracy than conventional systems in data mining.

Details

Industrial Management & Data Systems, vol. 117 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 25 May 2022

Bingwei Gao, Wei Shen, Ye Dai and Yong Tai Ye

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the…

1471

Abstract

Purpose

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the performance of the servo system, and to ensure the stability and accuracy of practical applications.

Design/methodology/approach

This study proposes a parameter self-tuning method for ADRC based on an improved glowworm swarm optimization algorithm. The algorithm is improved by using sine and cosine local optimization operators and an adaptive mutation strategy. The improved algorithm is then used for parameter tuning of the ADRC to improve the anti-interference ability of the control system and ensure the accuracy of the controller parameters.

Findings

The authors designed an optimization model based on MATLAB, selected examples of simulation and experimental research and compared it with the standard glowworm swarm optimization algorithm, particle swarm algorithm and artificial bee colony algorithm. The results show that the response time of using the improved glowworm swarm optimization algorithm to optimize the auto-disturbance rejection control is short; there is no overshoot; the tracking process is relatively stable; the anti-interference ability is strong; and the optimization effect is better.

Originality/value

The innovation of this study is to improve the glowworm swarm optimization algorithm, propose a sine and cosine, local optimization operator, expand the firefly search space and introduce a new adaptive mutation strategy to adaptively adjust the mutation probability based on the fitness value, improve the global search ability of the algorithm and use the improved algorithm to adjust the parameters of the active disturbance rejection controller.

Article
Publication date: 3 February 2022

Juan Du, Yan Xue, Vijayan Sugumaran, Min Hu and Peng Dong

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance…

Abstract

Purpose

For prefabricated building construction, improper handling of the production scheduling for prefabricated components is one of the main reasons that affect project performance, which causes overspending, schedule overdue and quality issues. Prior research on prefabricated components production schedule has shown that optimizing the flow shop scheduling problem (FSSP) is the basis for solving this issue. However, some key resources and the behavior of the participants in the context of actual prefabricated components production are not considered comprehensively.

Design/methodology/approach

This paper characterizes the production scheduling of the prefabricated components problem into a permutation flow shop scheduling problem (PFSSP) with multi-optimization objectives, and limitation on mold and buffers size. The lean construction principles of value-based management (VBM) and just-in-time (JIT) are incorporated into the production process of precast components. Furthermore, this paper applies biogeography-based optimization (BBO) to the production scheduling problem of prefabricated components combined with some improvement measures.

Findings

This paper focuses on two specific scenarios: production planning and production rescheduling. In the production planning stage, based on the production factor, this study establishes a multi-constrained and multi-objective prefabricated component production scheduling mathematical model and uses the improved BBO for prefabricated component production scheduling. In the production rescheduling stage, the proposed model allows real-time production plan adjustments based on uncertain events. An actual case has been used to verify the effectiveness of the proposed model and the improved BBO.

Research limitations/implications

With respect to limitations, only linear weighted transformations are used for objective optimization. In regards to research implications, this paper considers the production of prefabricated components in an environment where all parties in the supply chain of prefabricated components participate to solve the production scheduling problem. In addition, this paper creatively applies the improved BBO to the production scheduling problem of prefabricated components. Compared to other algorithms, the results show that the improved BBO show optimized result.

Practical implications

The proposed approach helps prefabricated component manufacturers consider complex requirements which could be used to formulate a more scientific and reasonable production plan. The proposed plan could ensure the construction project schedule and balance the reasonable requirements of all parties. In addition, improving the ability of prefabricated component production enterprises to deal with uncertain events. According to actual production conditions (such as the occupation of mold resources and storage resources of completed components), prefabricated component manufacturers could adjust production plans to reduce the cost and improve the efficiency of the whole prefabricated construction project.

Originality/value

The value of this article is to provide details of the procedures and resource constraints from the perspective of the precast components supply chain, which is closer to the actual production process of prefabricated components. In addition, developing the production scheduling for lean production will be in line with the concept of sustainable development. The proposed lean production scheduling could establish relationships between prefabricated component factory manufacturers, transportation companies, on-site contractors and production workers to reduce the adverse effects of emergencies on the prefabricated component production process, and promote the smooth and efficient operation of construction projects.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 August 2017

Du Lin, Bo Shen, Yurong Liu, Fuad E. Alsaadi and Ahmed Alsaedi

The purpose of this paper is to improve the performance of the genetic algorithm-based compliant robot path planning (GACRPP) in complex dynamic environment by proposing an…

Abstract

Purpose

The purpose of this paper is to improve the performance of the genetic algorithm-based compliant robot path planning (GACRPP) in complex dynamic environment by proposing an improved bidirectional rapidly exploring random tree (Bi-RRT)-based population initialization method.

Design/methodology/approach

To achieve GACRPP in complex dynamic environment with high performance, an improved Bi-RRT-based population initialization method is proposed. First, the grid model is adopted to preprocess the working space of mobile robot. Second, an improved Bi-RRT is proposed to create multi-cluster connections between the starting point and the goal point. Third, the backtracking method is used to generate the initial population based on the multi-cluster connections generated by the improved Bi-RRT. Subsequently, some comparative experiments are implemented where the performances of the improved Bi-RRT-based population initialization method are compared with other population initialization methods, and the comparison results of the improved genetic algorithm (IGA) combining with the different population initialization methods are shown. Finally, the optimal path is further smoothed with the help of the technique of quadratic B-spline curves.

Findings

It is shown in the experiment results that the improved Bi-RRT-based population initialization method is capable of deriving a more diversified initial population with less execution time and the IGA combining with the proposed population initialization method outperforms the one with other population initialization methods in terms of the length of optimal path and the execution time.

Originality/value

In this paper, the Bi-RRT is introduced as a population initialization method into the GACRPP problem. An improved Bi-RRT is proposed for the purpose of increasing the diversity of initial population. To characterize the diversity of initial population, a new notion of breadth is defined in terms of Hausdorff distance between different paths.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 April 2024

Hu Luo, Haobin Ruan and Dawei Tu

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images…

Abstract

Purpose

The purpose of this paper is to propose a whole set of methods for underwater target detection, because most underwater objects have small samples, low quality underwater images problems such as detail loss, low contrast and color distortion, and verify the feasibility of the proposed methods through experiments.

Design/methodology/approach

The improved RGHS algorithm to enhance the original underwater target image is proposed, and then the YOLOv4 deep learning network for underwater small sample targets detection is improved based on the combination of traditional data expansion method and Mosaic algorithm, expanding the feature extraction capability with SPP (Spatial Pyramid Pooling) module after each feature extraction layer to extract richer feature information.

Findings

The experimental results, using the official dataset, reveal a 3.5% increase in average detection accuracy for three types of underwater biological targets compared to the traditional YOLOv4 algorithm. In underwater robot application testing, the proposed method achieves an impressive 94.73% average detection accuracy for the three types of underwater biological targets.

Originality/value

Underwater target detection is an important task for underwater robot application. However, most underwater targets have the characteristics of small samples, and the detection of small sample targets is a comprehensive problem because it is affected by the quality of underwater images. This paper provides a whole set of methods to solve the problems, which is of great significance to the application of underwater robot.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 October 2009

Guo‐Qiang Wu, Zhao‐Wei Sun and Xian‐De Wu

The purpose of this paper is to research the traditional belief‐propagation (BP) decoding algorithm of low‐density parity‐check code. The big computation load is a shortcoming of…

Abstract

Purpose

The purpose of this paper is to research the traditional belief‐propagation (BP) decoding algorithm of low‐density parity‐check code. The big computation load is a shortcoming of traditional BP decoding algorithm. Accordingly, the paper provides an improved BP decoding algorithm which raises the decoding efficiency and reduces decoding time delay.

Design/methodology/approach

An improved BP decoding algorithm is studied and the error correction performance of the improved BP decoding algorithm in the Gaussian channel is provided.

Findings

The simulation result shows the improved BP decoding algorithm has lower computational complexity and higher decoding speed based on the premise of a little decoding performance loss.

Research limitations/implications

The improved BP decoding algorithm has lower computational complexity and higher decoding speed based on the premise of a little decoding performance loss.

Practical implications

The improved BP decoding algorithm raises the decoding efficiency and reduces decoding time delay.

Originality/value

The decoding algorithm only needs to update the wrong bit information which might arise, but not update the bit information whose reliability is very high. The improved BP decoding algorithm raises the decoding efficiency and reduces decoding time delay.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 September 2019

Yu Zhou

To plan the urban traffic path using the ant colony algorithm, the composition and functional division of the mobile robot are analyzed. The TSP (Traveling Salesman Problem) is…

Abstract

To plan the urban traffic path using the ant colony algorithm, the composition and functional division of the mobile robot are analyzed. The TSP (Traveling Salesman Problem) is used to deeply understand the traditional ant colony algorithm. Then, based on this, the improvement scheme of the traditional ant colony algorithm is analyzed. The results showed that the artificial potential field method and the A* algorithm improved the performance of the ant colony algorithm. At the initial stage of the search path, the blindness and randomness of the ant colony algorithm due to insufficient pheromone concentration in each path were solved. The local optimal path is avoided with the development of algorithm iteration. Therefore, the improved ant colony algorithm is superior to the traditional ant colony algorithm.

Details

Open House International, vol. 44 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 29000