Search results

1 – 10 of 435
Article
Publication date: 22 August 2022

Qingxia Li, Xiaohua Zeng and Wenhong Wei

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective…

Abstract

Purpose

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Design/methodology/approach

In this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.

Findings

In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.

Originality/value

In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 March 2006

R. Sunyk and P. Steinmann

Continuum‐atomistic modeling denotes a mixed approach combining the usual framework of continuum mechanics with atomistic features like e.g. interaction potentials. Thereby, the…

Abstract

Continuum‐atomistic modeling denotes a mixed approach combining the usual framework of continuum mechanics with atomistic features like e.g. interaction potentials. Thereby, the kinematics are typically characterized by the so called Cauchy‐Born rule representing atomic distance vectors in the spatial configuration as an affine mapping of the atomic distance vectors in the material configuration in terms of the local deformation gradient. The application of the Cauchy‐Born rule requires sufficiently homogeneous deformations of the underlying crystal. The model is no more valid if the deformation becomes inhomogeneous. By virtue of the Cauchy‐Born hypothesis, a localization criterion has been derived in terms of the loss of infinitesimal rank‐1 convexity of the strain energy density. According to this criterion, a numerical yield condition has been computed for two different interatomic energy functions. Therewith, the range of the Cauchy‐Born rule validity has been defined, since the strain energy density remains quasiconvex only within the computed yield surface. To provide a possibility to continue the simulation of material response after the loss of quasiconvexity, a relaxation procedure proposed by Tadmor et al. [1] leading necessarily to the development of microstructures has been used. Alternatively to the above mentioned criterion, a stability criterion has been applied to detect the critical deformation. For the study in the postcritical region, the path‐change procedure proposed by Wagner and Wriggers [2] has been adapted for the continuum‐atomistics and modified.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 January 2009

B. Tomas Johansson

To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the…

Abstract

Purpose

To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain.

Design/methodology/approach

Earlier works have involved the similar problem but for stationary case (time‐independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time‐dependent case.

Findings

The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method.

Research limitations/implications

The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non‐linear Navier‐Stokes equation.

Practical implications

Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements.

Originality/value

A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2019

Magda Joachimiak, Michał Ciałkowski and Andrzej Frąckowiak

The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with…

Abstract

Purpose

The purpose of this paper is to present the method for solving the inverse Cauchy-type problem for the Laplace’s equation. Calculations were made for the rectangular domain with the target temperature on three boundaries and, additionally, on one of the boundaries, the heat flux distribution was selected. The purpose of consideration was to determine the distribution of temperature on a section of the boundary of the investigated domain (boundary Γ1) and find proper method for the problem regularization.

Design/methodology/approach

The solution of the direct and the inverse (Cauchy-type) problems for the Laplace’s equation is presented in the paper. The form of the solution is noted as the linear combination of the Chebyshev polynomials. The collocation method in which collocation points had been determined based on the Chebyshev nodes was applied. To solve the Cauchy problem, the minimum of functional describing differences between the target and the calculated values of temperature and the heat flux on a section of the domain’s boundary was sought. Various types of the inverse problem regularization, based on Tikhonov and Tikhonov–Philips regularizations, were analysed. Regularization parameter α was chosen with the use of the Morozov discrepancy principle.

Findings

Calculations were performed for random disturbances to the heat flux density of up to 0.01, 0.02 and 0.05 of the target value. The quality of obtained results was next estimated by means of the norm. Effect of the disturbance to the heat flux density and the type of regularization on the sought temperature distribution on the boundary Γ1 was investigated. Presented methods of regularization are considerably less sensitive to disturbances to measurement data than to Tikhonov regularization.

Practical implications

Discussed in this paper is an example of solution of the Cauchy problem for the Laplace’s equation in the rectangular domain that can be applied for determination of the temperature distribution on the boundary of the heated element where it is impossible to measure temperature or the measurement is subject to a great error, for instance on the inner wall of the boiler. Authors investigated numerical examples for functions with singularities outside the domain, for which values of gradients change significantly within the calculation domain what corresponds to significant changes in temperature on the wall of the boiler during the fuel combustion.

Originality/value

In this paper, a new method for solving the Cauchy problem for the Laplace’s equation is described. To solve this problem, the Chebyshev polynomials and nodes were used. Various types of regularization of this problem were considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2008

Erwin Stein and Gautam Sagar

The purpose of this paper is to examine quadratic convergence of finite element analysis for hyperelastic material at finite strains via Abaqus‐UMAT as well as classification of…

2660

Abstract

Purpose

The purpose of this paper is to examine quadratic convergence of finite element analysis for hyperelastic material at finite strains via Abaqus‐UMAT as well as classification of the rates of convergence for iterative solutions in regular cases.

Design/methodology/approach

Different formulations for stiffness – Hessian form of the free energy functionals – are systematically given for getting the rate‐independent analytical tangent and the numerical tangent as well as rate‐dependent tangents using the objective Jaumann rate of Kirchoff stress tensor as used in Abaqus. The convergence rates for available element types in Abaqus are computed and compared for simple but significant nonlinear elastic problems, such as using the 8‐node linear brick (B‐bar) element – also with hybrid pressure formulation and with incompatible modes – further the 20‐node quadratic brick element with corresponding modifications as well as the 6‐node linear triangular prism element and 4‐node linear tetrahedral element with modifications.

Findings

By using the Jaumann rate of Kirchoff stress tensor for both, rate dependent and rate independent problems, quadratic or nearly quadratic convergence is achieved for most of the used elements using Abaqus‐UMAT interface. But in case of using rate independent analytical tangent for rate independent problems, even convergence at all is not assured for all elements and the considered problems.

Originality/value

First time the convergence properties of 3D finite elements available in Abaqus sre systematically treated for elastic material at finite strain via Abaqus‐UMAT.

Details

Engineering Computations, vol. 25 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2018

Stefan Prüger, Ashutosh Gandhi and Daniel Balzani

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in…

137

Abstract

Purpose

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in the context of constitutive modeling of microheterogeneous materials requires the choice of a representative volume element (RVE) of the considered microstructure, which may be based on some idealized assumptions and/or on experimental observations. In any case, a realistic microstructure within the RVE is either computationally too expensive or not fully accessible by experimental measurement techniques, which introduces some uncertainty regarding the microstructural features.

Design/methodology/approach

In this paper, a systematical variation of microstructural parameters controlling the morphology of an RVE with an idealized microstructure is conducted and the impact on macroscopic quantities of interest as well as microstructural fields and their statistics is investigated. The study is carried out under macroscopically homogeneous deformation states using the direct micro-macro scale transition approach.

Findings

The variation of microstructural parameters, such as inclusion volume fraction, aspect ratio and orientation of the inclusion with respect to the overall loading, influences the macroscopic behavior, especially the micromechanical fields significantly.

Originality/value

The systematic assessment of the impact of microstructural parameters on both macroscopic quantities and statistics of the micromechanical fields allows for a quantitative comparison of different microstructure morphologies and a reliable identification of microstructural parameters that promote failure initialization in microheterogeneous materials.

Article
Publication date: 15 March 2011

Wu Xuemou

The purpose of this paper is to state new formulation of the programme‐styled framework of pansystems research and related expansions.

Abstract

Purpose

The purpose of this paper is to state new formulation of the programme‐styled framework of pansystems research and related expansions.

Design/methodology/approach

Pansystems‐generalized extremum principle (0**: (dy/dx=0)**) is presented with recognitions to various logoi of philosophy, mathematics, technology, systems, cybernetics, informatics, relativity, biology, society, resource, communications and related topics: logic, history, humanities, aesthetics, journalism, IT, AI, TGBZ* <truth*goodness*beauty*Zen*>, etc. including recent rediscoveries of 50 or so pansystems logoi.

Findings

A keynote of the paper is to develop the deep logoi of the analytic mathematics, analytic mechanics, variational principles, Hilbert's sixth/23rd problems, pan‐axiomatization to encyclopedic principles and various applications. The 0**‐universal connections embody the transfield internet‐styled academic tendency of pansystems exploration.

Originality/value

The paper includes topics: history megawave, pansystems sublation‐modes, pan‐metaphysics, pansystems dialogs with logoi of 100 thinkers or so, and pansystems‐sublation for a series of logoi concerning the substructure of encyclopedic dialogs such as systems, derivative, extremum, quantification, variational principle, equation, symmetry, OR, optimization, approximation, yinyang, combination, normality‐abnormality, framework, modeling, simulation, relativity, recognition, practice, methodology, mathematics, operations and transformations, quotientization, product, clustering, Banach completeness theorem, Weierstrass approximation theorem, Jackson approximation theorem, Taylor theorem, approximation transformation theorems due to Walsh‐Sewell mathematical school, Hilbert problems, Cauchy theorem, theorems of equation stability, function theory, logic, paradox, axiomatization, cybernetics, dialectics, multistep decision, computer, synergy, vitality and the basic logoi for history, ethics, economics, society OR, aesthetics, journalism, institution, resource and traffics, AI, IT, etc.

Details

Kybernetes, vol. 40 no. 1/2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 May 2009

Moustafa Omar Ahmed Abu‐Shawiesh

This paper seeks to propose a univariate robust control chart for location and the necessary table of factors for computing the control limits and the central line as an…

1755

Abstract

Purpose

This paper seeks to propose a univariate robust control chart for location and the necessary table of factors for computing the control limits and the central line as an alternative to the Shewhart control chart.

Design/methodology/approach

The proposed method is based on two robust estimators, namely, the sample median, MD, to estimate the process mean, μ, and the median absolute deviation from the sample median, MAD, to estimate the process standard deviation, σ. A numerical example was given and a simulation study was conducted in order to illustrate the performance of the proposed method and compare it with that of the traditional Shewhart control chart.

Findings

The proposed robust MDMAD control chart gives better performance than the traditional Shewhart control chart if the underlying distribution of chance causes is non‐normal. It has good properties for heavy‐tailed distribution functions and moderate sample sizes and it compares favorably with the traditional Shewhart control chart.

Originality/value

The most common statistical process control (SPC) tool is the traditional Shewhart control chart. The chart is used to monitor the process mean based on the assumption that the underlying distribution of the quality characteristic is normal and there is no major contamination due to outliers. The sample mean, , and the sample standard deviation, S, are the most efficient location and scale estimators for the normal distribution often used to construct the control chart, but the sample mean, , and the sample standard deviation, S, might not be the best choices when one or both assumptions are not met. Therefore, the need for alternatives to the control chart comes into play. The literature shows that the sample median, MD, and the median absolute deviation from the sample median, MAD, are indeed more resistant to departures from normality and the presence of outliers.

Details

International Journal of Quality & Reliability Management, vol. 26 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 November 2021

Zakarya Djelloul Khedda, Kamel Boughrara, Frédéric Dubas, Baocheng Guo and El Hadj Ailam

Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical…

Abstract

Purpose

Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical prediction of temperature distribution based on the formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. Therefore, this paper aims to present a two-dimensional (2D) analytical model of steady-state temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode.

Design/methodology/approach

The proposed model is based on the multi-layer models with the convolution theorem (i.e. Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power losses in the PMSM with the finite-element method (FEM).

Findings

To validate the proposed analytical model, the analytical results are compared with those obtained by thermal FEM. The comparisons show good results of the proposed model.

Originality/value

A new 2D analytical model based on the PDE in steady-state for full prediction of temperature distribution in the PMSM takes into account the heat transfer by conduction, convection and radiation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 435