Search results

1 – 10 of over 8000
Book part
Publication date: 8 October 2013

Gloria Agyemang and Bill Ryan

This chapter examines organisational change processes that occur when accountability demands from powerful external stakeholders change. It investigates, firstly, whether these…

Abstract

This chapter examines organisational change processes that occur when accountability demands from powerful external stakeholders change. It investigates, firstly, whether these external accountability demands impact on the performance management systems of two different types of organisations. Secondly, it considers whether the goals for improved performance contained within the external accountability demands are realised. The chapter derives its primary insights from analysing in-depth interviews with managers working in a private sector company and in public sector organisations. The analyses reveal complex organisational responses. In the public sector case study, the organisations tended to reorient their performance management systems towards the external accountability demands; whilst in the private sector organisation, pressures from falling share prices forced managers to focus their decision making on the preferred performance measures contained in shareholders’ accountability demands. However, whilst there is some evidence of performance management system changes, the desires for improved performance subsumed by the external accountability demands are not necessarily realised through the performance management system changes.

Details

Managing Reality: Accountability and the Miasma of Private and Public Domains
Type: Book
ISBN: 978-1-78052-618-8

Keywords

Article
Publication date: 23 September 2022

Peng Gao, Xiuqin Su and Wenbo Zhang

This study aims to promote the anti-disturbance and tracking accuracy of optoelectronic stabilized platforms, which ensure that optical detectors accurately track targets and…

Abstract

Purpose

This study aims to promote the anti-disturbance and tracking accuracy of optoelectronic stabilized platforms, which ensure that optical detectors accurately track targets and acquire high-quality images.

Design/methodology/approach

An improved active disturbance rejection control (ADRC) strategy based on model-assisted double extended state observers (MDESOs) is proposed in this paper. First, by establishing an auxiliary model, the total disturbances are separated into two parts: inner and external disturbances. Then, MDESOs are designed to estimate the two parts by separately using two parallel ESOs, by which the controlled plant is adjusted to the ideal pure integral series. Simultaneously, combined with the nonlinear state error feedback, an overall control strategy is established.

Findings

Compared with the conventional ADRC and proportional derivative, the improved ADRC (IADRC) has stronger robustness and adaptability and effectively reduces the requirements for model accuracy and the gain of the ESO. The error of the auxiliary model is tolerated to exceed 50%, and the parameter values of the MDESOs are reduced by 90%.

Originality/value

The total disturbance rejection rate of the proposed strategy is only 3.11% under multiple disturbances, which indicates that the IADRC strategy significantly promotes anti-disturbance performance.

Article
Publication date: 10 January 2024

Xin Cai, Xiaozhou Zhu and Wen Yao

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and…

Abstract

Purpose

Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.

Design/methodology/approach

First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.

Findings

The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.

Originality/value

This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 May 2023

Yixuan Xue, Ziyang Zhen, Zhibing Zhang, Teng Cao and Tiancai Wan

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller…

Abstract

Purpose

Accurate glide path tracking is vital to the automatic carrier landing task of unmanned aerial vehicle (UAV). The purpose of this paper is to develop a reliable flight controller that can simultaneously deal with external disturbance, structure fault and actuator fault.

Design/methodology/approach

The automatic carrier landing task is resolved into the glide path tracking problem and attitude tracking problem. The disturbance observer-based adaptive sliding mode control scheme is proposed for system stabilization, disturbance rejection and fault tolerance.

Findings

Both the Lyapunov method and exemplary simulations can prove that the disturbance estimation error and the attitude tracking error converge in finite time in the presence of external disturbances and various faults.

Practical implications

The presented algorithm is testified by a UAV automatic carrier landing simulation, which shows the potential of practical usage.

Originality/value

The barrier function is introduced to adaptively update both the sliding mode observer gain and sliding mode controller gain, so that the sliding mode surface could converge to a predefined region without overestimation. The proposed flight controller ensures a secure carrier landing task.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 October 2018

Zebin Yang, Xi Chen, Xiaodong Sun, Chunfeng Bao and Jiang Lu

The purpose of this paper is to handle the problem of the radial disturbance caused by rotor mass unbalance and load change in a bearingless induction motor (BIM).

Abstract

Purpose

The purpose of this paper is to handle the problem of the radial disturbance caused by rotor mass unbalance and load change in a bearingless induction motor (BIM).

Design/methodology/approach

The active disturbance rejection controller (ADRC) is used to replace the traditional PI controller, and a cubic interpolation method is used to fit the nonlinear function of ADRC, so as to improve the control performance. Meanwhile, a disturbance observer is applied to the suspension system, and the observed disturbance acceleration is compensated to the suspension system in the form of current; thus, the suppression of the rotor radial disturbance is realized.

Findings

The proposed method can effectively suppress the radial disturbance of the rotor, meliorate the suspension performance of the motor and enhance the anti-interference ability of the system. Besides, it has excellent dynamic and static performance.

Originality/value

A radial disturbance control strategy of the BIM based on improved ADRC is proposed is to suppress the radial disturbance of the rotor. The improved ADRC is to enhance the control performance of the system, and the disturbance observer is designed to observe and compensate the disturbance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 February 2023

Shengqian Li and Xiaofan Zhang

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to…

Abstract

Purpose

An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.

Design/methodology/approach

A welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.

Findings

The simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.

Originality/value

The seam gets plumper and smoother, with better continuity and no undercut phenomenon.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 May 2023

Changlong Ye, Jingru Shao, Yong Liu and Suyang Yu

Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large…

Abstract

Purpose

Omnidirectional mobile robots with a special type of wheel structure can realize flexible motion with all three degrees of freedom in a plane. But the driving method brings large disturbance, which affects motion accuracy and stability. This study aims to improve the motion control accuracy of the omnidirectional mobile platform with MY3 wheels (MY3-OMR), a new fuzzy active disturbance rejection control (FADRC) method with adaptivity is proposed.

Design/methodology/approach

Based on the basic mechanical structure and drive characteristics of MY3-OMR, the dynamics model of the system is established. The linear active disturbance rejection control (LADRC) system is designed to reduce the interference of nonlinear factors in this dynamics model. A fuzzy controller is introduced to realize the online adjustment of the parameters of the LADRC, which further improves the anti-disturbance performance of the system.

Findings

The control method proposed in this paper is compared and analyzed with other methods by simulation and experiment. Results show that the proposed method has better tracking and robustness, which effectively improves the control accuracy of trajectory tracking of MY3-OMR.

Originality/value

A FADRC method with adaptivity is proposed by combining fuzzy control and LADRC. The motion accuracy and anti-interference ability of the MY3-OMR are improved by this control method, which lays a foundation for the subsequent application of MY3-OMR.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2021

Tiger Yuan, Guanyou Guo, Baiyu Du, Zhiping Zhao and Weikai Xu

The purpose of this paper is to resolve the problem of the dynamic response performance of the driving control system for a six-wheeled planetary rover. An adaptive sliding mode…

Abstract

Purpose

The purpose of this paper is to resolve the problem of the dynamic response performance of the driving control system for a six-wheeled planetary rover. An adaptive sliding mode controller based on an improved genetic algorithm (IGA) to tune PID sliding surface parameters was used in the driving control system of the planetary rover.

Design/methodology/approach

First, the mathematical model of planetary rover driving control is established. Second, according to sliding mode variable structure control, an equivalent controller and a disturbance controller are constructed to solve the problem of a multi-disturbance nonlinear driving control system of planetary rovers and an IGA is used to tune PID parameters.

Findings

Simulation results show that the proposed control algorithm improves the accuracy of the driving control system and optimizes the smoothness of rover motion control.

Practical implications

The controller based on the IGA to tune PID sliding surface parameters has good self-adaptability and real-time controllability for the control object which is difficult to present a precise mathematical model.

Originality/value

The advanced control method is adopted to solve the uncertainty and external interference of planetary rovers in a complex environment. The mathematical model of the six-wheeled rover is established as the control object and the uncertainty and external disturbance of the model are considered. The controller based on IGA has good adaptability and real-time performance and the control algorithm can be used to drive robots in complex environments.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2021

Liang Zhang, Liang Jing, Liheng Ye and Xing Gao

This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle.

Abstract

Purpose

This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle.

Design/methodology/approach

In this paper, a predefined-time attitude tracking controller is presented for a horizontal takeoff and horizontal landing reusable launch vehicle (HTHLRLV). Firstly, the attitude tracking error dynamics model of the HTHLRLV is developed. Subsequently, a novel sliding mode surface is designed with predefined-time stability. Furthermore, by using the proposed sliding mode surface, a predefined-time controller is derived. To compensate the external disturbances or model uncertainties, a fixed-time disturbance observer is developed, and its convergence time can be defined as a prior control parameter. Finally, the stability of the proposed sliding mode surface and the controller can be proved by the Lyapunov theory.

Findings

In contrast to other fixed-time methods, this controller only requires three control parameters, and the convergence time can be predefined instead of being estimated. The simulation results also demonstrate the effectiveness of the proposed controller.

Originality/value

A novel predefined-time attitude tracking controller is developed based on the predefined-time sliding mode surface (SMS) and fixed-time disturbance observer (FxTDO). The convergence time of the system can be selected as a prior control parameter for SMS and FxTDO.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 8000